--- license: mit library_name: peft tags: - trl - dpo - generated_from_trainer base_model: HuggingFaceH4/mistral-7b-sft-beta model-index: - name: zephyr-deita results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: HuggingFaceH4/mistral-7b-sft-beta model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false rl: true datasets: - path: winglian/deita-nectar split: train_dpo type: zephyr.nectar dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./zephyr-deita save_total_limit: 3 hub_model_id: openaccess-ai-collective/dpo-zephyr-deita-nectar adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: false pad_to_sequence_len: false lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_modules_to_save: lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: dpo-zephyr-deita-nectar wandb_entity: oaaic wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 optimizer: paged_adamw_8bit adam_beta2: 0.95 adam_epsilion: 0.00001 lr_scheduler: cosine learning_rate: 1.0e-5 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: eval_table_size: eval_table_max_new_tokens: 128 save_steps: 45 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: save_safetensors: true dataloader_num_workers: 16 dataloader_pin_memory: true ```

# zephyr-deita This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 135 ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0