--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10053 - loss:MultipleNegativesRankingLoss base_model: Snowflake/snowflake-arctic-embed-l-v2.0 widget: - source_sentence: Nursing Reform sentences: - 'Staff nurses speak out on reform. ' - 'Synthesis of graphene with different layers on paper-like sintered stainless steel fibers and its application as a metal-free catalyst for catalytic wet peroxide oxidation of phenol. ' - 'Nursing reformation. ' - source_sentence: NiTiO3 composite sentences: - 'Fabrication and electromagnetic performance of talc/NiTiO 3 composite. ' - 'Nickel-titanium usage and breakage: an update. ' - 'Innervational plasticity of the oculomotor system. ' - source_sentence: Single-Session Competency Framework sentences: - 'Competency assessment: one step at the time. ' - 'Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. ' - 'Describing a Clinical Group Coding Method for Identifying Competencies in an Allied Health Single Session. ' - source_sentence: Streptococcal myositis treatment outcomes sentences: - 'Evaluation of penicillin and hyperbaric oxygen in the treatment of streptococcal myositis. ' - 'Polymicrobial myositis. ' - 'Parse''s criteria for evaluation of theory with a comparison of Fawcett''s and Parse''s approaches. ' - source_sentence: Risk-based water quality monitoring framework sentences: - 'Development of a new risk-based framework to guide investment in water quality monitoring. ' - 'NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. ' - 'Water quality monitoring strategies - A review and future perspectives. ' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0 results: - task: type: triplet name: Triplet dataset: name: triplet dev type: triplet-dev metrics: - type: cosine_accuracy value: 0.72 name: Cosine Accuracy --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Risk-based water quality monitoring framework', 'Development of a new risk-based framework to guide investment in water quality monitoring. ', 'Water quality monitoring strategies - A review and future perspectives. ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `triplet-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:---------| | **cosine_accuracy** | **0.72** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 10,053 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------| | Pediatric Infectious Disease Control | [Urgent tasks in scientific studies concerning the control of infectious diseases in children]. | Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics. | | Thermal coefficient of phase shift | Thermal characteristics of phase shift in jacketed optical fibers. | Thermal effects. | | Renal biomarkers in heart failure | Current and novel renal biomarkers in heart failure. | Cardiac biomarkers of heart failure in chronic kidney disease. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine_with_restarts - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_restarts - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | triplet-dev_cosine_accuracy | |:-----:|:----:|:-------------:|:---------------------------:| | 0 | 0 | - | 0.58 | | 0.025 | 1 | 1.922 | - | | 0.05 | 2 | 1.7637 | - | | 0.075 | 3 | 1.8049 | - | | 0.1 | 4 | 1.4954 | - | | 0.125 | 5 | 1.7383 | - | | 0.15 | 6 | 1.4773 | - | | 0.175 | 7 | 1.3947 | - | | 0.2 | 8 | 1.5337 | - | | 0.225 | 9 | 1.2705 | - | | 0.25 | 10 | 1.167 | - | | 0.275 | 11 | 1.3125 | - | | 0.3 | 12 | 1.4049 | - | | 0.325 | 13 | 1.3382 | - | | 0.35 | 14 | 1.1542 | - | | 0.375 | 15 | 1.2514 | - | | 0.4 | 16 | 1.1141 | - | | 0.425 | 17 | 1.2267 | - | | 0.45 | 18 | 1.1781 | - | | 0.475 | 19 | 1.269 | - | | 0.5 | 20 | 1.0684 | - | | 0.525 | 21 | 1.2045 | - | | 0.55 | 22 | 0.9869 | - | | 0.575 | 23 | 1.2933 | - | | 0.6 | 24 | 1.0751 | - | | 0.625 | 25 | 1.2671 | - | | 0.65 | 26 | 1.1874 | - | | 0.675 | 27 | 1.241 | - | | 0.7 | 28 | 1.1735 | - | | 0.725 | 29 | 1.247 | - | | 0.75 | 30 | 1.1166 | - | | 0.775 | 31 | 1.1484 | - | | 0.8 | 32 | 1.2556 | - | | 0.825 | 33 | 1.1028 | - | | 0.85 | 34 | 1.215 | - | | 0.875 | 35 | 1.3421 | - | | 0.9 | 36 | 1.1762 | - | | 0.925 | 37 | 1.2029 | - | | 0.95 | 38 | 1.1283 | - | | 0.975 | 39 | 1.0871 | - | | 1.0 | 40 | 0.7317 | 0.72 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 2.19.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```