---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10053
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l-v2.0
widget:
- source_sentence: Nursing Reform
sentences:
- 'Staff nurses speak out on reform. '
- 'Synthesis of graphene with different layers on paper-like sintered stainless
steel fibers and its application as a metal-free catalyst for catalytic wet peroxide
oxidation of phenol. '
- 'Nursing reformation. '
- source_sentence: NiTiO3 composite
sentences:
- 'Fabrication and electromagnetic performance of talc/NiTiO 3 composite. '
- 'Nickel-titanium usage and breakage: an update. '
- 'Innervational plasticity of the oculomotor system. '
- source_sentence: Single-Session Competency Framework
sentences:
- 'Competency assessment: one step at the time. '
- 'Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. '
- 'Describing a Clinical Group Coding Method for Identifying Competencies in an
Allied Health Single Session. '
- source_sentence: Streptococcal myositis treatment outcomes
sentences:
- 'Evaluation of penicillin and hyperbaric oxygen in the treatment of streptococcal
myositis. '
- 'Polymicrobial myositis. '
- 'Parse''s criteria for evaluation of theory with a comparison of Fawcett''s and
Parse''s approaches. '
- source_sentence: Risk-based water quality monitoring framework
sentences:
- 'Development of a new risk-based framework to guide investment in water quality
monitoring. '
- 'NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive
oxygen species-dependent signal transduction. '
- 'Water quality monitoring strategies - A review and future perspectives. '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
results:
- task:
type: triplet
name: Triplet
dataset:
name: triplet dev
type: triplet-dev
metrics:
- type: cosine_accuracy
value: 0.72
name: Cosine Accuracy
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Risk-based water quality monitoring framework',
'Development of a new risk-based framework to guide investment in water quality monitoring. ',
'Water quality monitoring strategies - A review and future perspectives. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `triplet-dev`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:---------|
| **cosine_accuracy** | **0.72** |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 10,053 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Pediatric Infectious Disease Control
| [Urgent tasks in scientific studies concerning the control of infectious diseases in children].
| Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics.
|
| Thermal coefficient of phase shift
| Thermal characteristics of phase shift in jacketed optical fibers.
| Thermal effects.
|
| Renal biomarkers in heart failure
| Current and novel renal biomarkers in heart failure.
| Cardiac biomarkers of heart failure in chronic kidney disease.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters