import torch from torch import nn from transformers import PreTrainedModel, PretrainedConfig from model import GPT, GPTConfig # Import your original model and config classes import json class CustomGPTConfig(PretrainedConfig): model_type = "gpt" def __init__(self, **kwargs): super().__init__(**kwargs) for key, value in kwargs.items(): setattr(self, key, value) class MatterGPTWrapper(PreTrainedModel): config_class = CustomGPTConfig base_model_prefix = "gpt" def __init__(self, config): super().__init__(config) self.model = GPT(GPTConfig(**config.__dict__)) def forward(self, input_ids, attention_mask=None, labels=None, prop=None): return self.model(input_ids, targets=labels, prop=prop) def generate(self, input_ids, prop, max_length, num_return_sequences=1, **kwargs): steps = max_length - input_ids.shape[1] return self.model.sample(input_ids, steps, prop=prop, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_path, *model_args, **kwargs): config_file = f"{pretrained_model_path}/config.json" with open(config_file, 'r') as f: config_dict = json.load(f) config = CustomGPTConfig(**config_dict) model = cls(config) state_dict = torch.load(f"{pretrained_model_path}/pytorch_model.pt", map_location="cpu") model.model.load_state_dict(state_dict) return model def save_pretrained(self, save_directory): self.config.save_pretrained(save_directory) torch.save(self.model.state_dict(), f"{save_directory}/pytorch_model.pt") class SimpleTokenizer: def __init__(self, vocab_file): with open(vocab_file, 'r') as f: self.vocab = f.read().splitlines() self.vocab = sorted(set(self.vocab + ['<', '>'])) self.stoi = {ch: i for i, ch in enumerate(self.vocab)} self.itos = {i: ch for i, ch in enumerate(self.vocab)} def encode(self, text): return [self.stoi[token] for token in text.split()] def decode(self, ids): return " ".join([self.itos[int(i)] for i in ids if i in self.itos]).replace("<", "").strip() def __call__(self, text, return_tensors=None): encoded = self.encode(text) if return_tensors == 'pt': import torch return {'input_ids': torch.tensor([encoded])} return {'input_ids': [encoded]}