---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:212930
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: analisis perekonomian indonesia triwulan i 2007
sentences:
- Indikator Ekonomi Februari 2017
- Perkembangan Harga Produsen Gabah Maret 2021
- Hasil Survei Komoditas Perikanan Potensi 2021 Profil Rumah Tangga Usaha Budidaya
Rumput Laut
- source_sentence: Analisis indikator ekonomi Indonesia September 2023
sentences:
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan
Negara Oktober 2011
- April 2015 Harga Grosir Naik 0,17%
- Direktori Eksportir Indonesia 2014
- source_sentence: Ekonomi Indonesia awal 2009
sentences:
- Statistik Hotel dan Akomodasi Lainnya di Indonesia 2005
- Neraca Pemerintahan Pusat Indonesia Triwulanan 2007-2013:2
- Persentase Rumah Tangga menurut Provinsi dan Sumber Penerangan Listrik PLN, 1993-2022
- source_sentence: Berapa persen kenaikan ekspor Indonesia pada Oktober 2024 dibandingkan
September 2024?
sentences:
- Impor Indonesia mengalami penurunan sebesar 5% pada bulan Oktober 2024.
- Statistik Pendidikan 2009
- Penduduk Jambi Hasil Sensus Penduduk SP2000
- source_sentence: Berapa persen deflasi ysng terjadi paa Maret 2010?
sentences:
- Pada Bulan Maret 2010 Terjadi Deflasi Sebesar 0,14 Persen.
- Analisis Rumah Tangga Usaha Hortikultura di Indonesia Hasil Sensus Pertanian 2013
- Inflasi September 2008 sebesar 0,97 persen.
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search v1 2 dev
type: allstats-semantic-search-v1-2-dev
metrics:
- type: pearson_cosine
value: 0.9923210175659568
name: Pearson Cosine
- type: spearman_cosine
value: 0.9293313388011538
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search v1 test
type: allstat-semantic-search-v1-test
metrics:
- type: pearson_cosine
value: 0.9929329799075536
name: Pearson Cosine
- type: spearman_cosine
value: 0.9283010769773397
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1-2")
# Run inference
sentences = [
'Berapa persen deflasi ysng terjadi paa Maret 2010?',
'Pada Bulan Maret 2010 Terjadi Deflasi Sebesar 0,14 Persen.',
'Inflasi September 2008 sebesar 0,97 persen.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-search-v1-2-dev` and `allstat-semantic-search-v1-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-search-v1-2-dev | allstat-semantic-search-v1-test |
|:--------------------|:----------------------------------|:--------------------------------|
| pearson_cosine | 0.9923 | 0.9929 |
| **spearman_cosine** | **0.9293** | **0.9283** |
## Training Details
### Training Dataset
#### allstats-semantic-search-synthetic-dataset-v1
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [c477abf](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/c477abfd5da1a6968bad673a50c71e17b62f39b4)
* Size: 212,930 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
- min: 5 tokens
- mean: 11.52 tokens
- max: 32 tokens
| - min: 4 tokens
- mean: 14.85 tokens
- max: 70 tokens
| - min: 0.0
- mean: 0.51
- max: 1.0
|
* Samples:
| query | doc | label |
|:----------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:------------------|
| studi tentang kemiskinan urban
| Perkembangan Mingguan Harga Eceran Beberapa Bahan Pokok di Ibukota Provinsi Seluruh Indonesia (Juli-Desember 2018)
| 0.1
|
| Harga gabah di tingkat produsen bulan September
| Upah Buruh Juli 2020
| 0.1
|
| Data perusahaan konstruksi di wilayah timur Indonesia thn 2013
| Direktori Perusahaan Konstruksi 2013 Buku 6 Maluku dan Papua
| 0.92
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-semantic-search-synthetic-dataset-v1
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [c477abf](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/c477abfd5da1a6968bad673a50c71e17b62f39b4)
* Size: 26,616 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details | - min: 5 tokens
- mean: 11.33 tokens
- max: 53 tokens
| - min: 4 tokens
- mean: 14.6 tokens
- max: 69 tokens
| - min: 0.0
- mean: 0.5
- max: 1.0
|
* Samples:
| query | doc | label |
|:--------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|:------------------|
| Informasi potensi deas di Maluku 011
| Statistik Potensi Desa Provinsi Maluku 2011
| 0.87
|
| Berapa persen kenaikan jumlah penumpang angkutan udara internasional pada Januari 2024 dibandingkan Desember 2023?
| Kenaikan jumlah penumpang bulan lainnya
| 0.0
|
| informasi tentang potensi desa jambi tahun 2005
| Statistik Potensi Desa Provinsi Jambi 2005
| 0.85
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 6
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
Click to expand
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-2-dev_spearman_cosine | allstat-semantic-search-v1-test_spearman_cosine |
|:------:|:-----:|:-------------:|:---------------:|:-------------------------------------------------:|:-----------------------------------------------:|
| 0.0376 | 250 | 0.0734 | 0.0464 | 0.6927 | - |
| 0.0751 | 500 | 0.043 | 0.0362 | 0.7146 | - |
| 0.1127 | 750 | 0.0353 | 0.0288 | 0.7364 | - |
| 0.1503 | 1000 | 0.0271 | 0.0274 | 0.7571 | - |
| 0.1878 | 1250 | 0.0241 | 0.0225 | 0.7738 | - |
| 0.2254 | 1500 | 0.0228 | 0.0203 | 0.7699 | - |
| 0.2630 | 1750 | 0.0207 | 0.0197 | 0.7881 | - |
| 0.3005 | 2000 | 0.0187 | 0.0191 | 0.7900 | - |
| 0.3381 | 2250 | 0.0194 | 0.0183 | 0.7794 | - |
| 0.3757 | 2500 | 0.0182 | 0.0178 | 0.7870 | - |
| 0.4132 | 2750 | 0.0198 | 0.0183 | 0.8009 | - |
| 0.4508 | 3000 | 0.0189 | 0.0182 | 0.7912 | - |
| 0.4884 | 3250 | 0.0177 | 0.0168 | 0.7963 | - |
| 0.5259 | 3500 | 0.0178 | 0.0173 | 0.7920 | - |
| 0.5635 | 3750 | 0.017 | 0.0183 | 0.8014 | - |
| 0.6011 | 4000 | 0.0186 | 0.0180 | 0.7777 | - |
| 0.6386 | 4250 | 0.0187 | 0.0167 | 0.7976 | - |
| 0.6762 | 4500 | 0.015 | 0.0154 | 0.8194 | - |
| 0.7137 | 4750 | 0.0158 | 0.0157 | 0.8062 | - |
| 0.7513 | 5000 | 0.0152 | 0.0148 | 0.8117 | - |
| 0.7889 | 5250 | 0.0148 | 0.0149 | 0.8115 | - |
| 0.8264 | 5500 | 0.0146 | 0.0141 | 0.8175 | - |
| 0.8640 | 5750 | 0.0154 | 0.0144 | 0.7951 | - |
| 0.9016 | 6000 | 0.0155 | 0.0152 | 0.8163 | - |
| 0.9391 | 6250 | 0.0145 | 0.0136 | 0.8216 | - |
| 0.9767 | 6500 | 0.0149 | 0.0149 | 0.8140 | - |
| 1.0143 | 6750 | 0.0132 | 0.0132 | 0.8179 | - |
| 1.0518 | 7000 | 0.0108 | 0.0124 | 0.8232 | - |
| 1.0894 | 7250 | 0.0109 | 0.0120 | 0.8330 | - |
| 1.1270 | 7500 | 0.0112 | 0.0132 | 0.8219 | - |
| 1.1645 | 7750 | 0.0116 | 0.0124 | 0.8226 | - |
| 1.2021 | 8000 | 0.0121 | 0.0120 | 0.8151 | - |
| 1.2397 | 8250 | 0.0109 | 0.0119 | 0.8384 | - |
| 1.2772 | 8500 | 0.0103 | 0.0114 | 0.8415 | - |
| 1.3148 | 8750 | 0.0105 | 0.0116 | 0.8191 | - |
| 1.3524 | 9000 | 0.0104 | 0.0122 | 0.8292 | - |
| 1.3899 | 9250 | 0.0108 | 0.0117 | 0.8292 | - |
| 1.4275 | 9500 | 0.011 | 0.0118 | 0.8339 | - |
| 1.4651 | 9750 | 0.0105 | 0.0106 | 0.8367 | - |
| 1.5026 | 10000 | 0.0093 | 0.0098 | 0.8467 | - |
| 1.5402 | 10250 | 0.0105 | 0.0101 | 0.8334 | - |
| 1.5778 | 10500 | 0.0102 | 0.0106 | 0.8324 | - |
| 1.6153 | 10750 | 0.01 | 0.0097 | 0.8472 | - |
| 1.6529 | 11000 | 0.0106 | 0.0098 | 0.8378 | - |
| 1.6905 | 11250 | 0.0088 | 0.0095 | 0.8531 | - |
| 1.7280 | 11500 | 0.0085 | 0.0095 | 0.8409 | - |
| 1.7656 | 11750 | 0.0089 | 0.0091 | 0.8431 | - |
| 1.8032 | 12000 | 0.0083 | 0.0088 | 0.8524 | - |
| 1.8407 | 12250 | 0.0082 | 0.0088 | 0.8591 | - |
| 1.8783 | 12500 | 0.0078 | 0.0092 | 0.8478 | - |
| 1.9159 | 12750 | 0.009 | 0.0085 | 0.8480 | - |
| 1.9534 | 13000 | 0.0082 | 0.0089 | 0.8465 | - |
| 1.9910 | 13250 | 0.0076 | 0.0085 | 0.8564 | - |
| 2.0285 | 13500 | 0.0059 | 0.0082 | 0.8602 | - |
| 2.0661 | 13750 | 0.0073 | 0.0081 | 0.8558 | - |
| 2.1037 | 14000 | 0.0075 | 0.0081 | 0.8492 | - |
| 2.1412 | 14250 | 0.0066 | 0.0077 | 0.8520 | - |
| 2.1788 | 14500 | 0.0066 | 0.0076 | 0.8599 | - |
| 2.2164 | 14750 | 0.007 | 0.0080 | 0.8589 | - |
| 2.2539 | 15000 | 0.0065 | 0.0076 | 0.8552 | - |
| 2.2915 | 15250 | 0.0071 | 0.0075 | 0.8604 | - |
| 2.3291 | 15500 | 0.0062 | 0.0073 | 0.8714 | - |
| 2.3666 | 15750 | 0.0058 | 0.0069 | 0.8714 | - |
| 2.4042 | 16000 | 0.0066 | 0.0072 | 0.8570 | - |
| 2.4418 | 16250 | 0.0058 | 0.0069 | 0.8757 | - |
| 2.4793 | 16500 | 0.0059 | 0.0067 | 0.8726 | - |
| 2.5169 | 16750 | 0.0057 | 0.0067 | 0.8663 | - |
| 2.5545 | 17000 | 0.0058 | 0.0068 | 0.8703 | - |
| 2.5920 | 17250 | 0.0058 | 0.0068 | 0.8765 | - |
| 2.6296 | 17500 | 0.006 | 0.0067 | 0.8729 | - |
| 2.6672 | 17750 | 0.0057 | 0.0067 | 0.8689 | - |
| 2.7047 | 18000 | 0.0055 | 0.0065 | 0.8750 | - |
| 2.7423 | 18250 | 0.0056 | 0.0066 | 0.8734 | - |
| 2.7799 | 18500 | 0.0053 | 0.0062 | 0.8745 | - |
| 2.8174 | 18750 | 0.0053 | 0.0062 | 0.8814 | - |
| 2.8550 | 19000 | 0.0048 | 0.0063 | 0.8839 | - |
| 2.8926 | 19250 | 0.005 | 0.0063 | 0.8741 | - |
| 2.9301 | 19500 | 0.0063 | 0.0061 | 0.8752 | - |
| 2.9677 | 19750 | 0.0052 | 0.0059 | 0.8790 | - |
| 3.0053 | 20000 | 0.0049 | 0.0058 | 0.8825 | - |
| 3.0428 | 20250 | 0.0042 | 0.0059 | 0.8787 | - |
| 3.0804 | 20500 | 0.0043 | 0.0056 | 0.8839 | - |
| 3.1180 | 20750 | 0.0036 | 0.0058 | 0.8870 | - |
| 3.1555 | 21000 | 0.004 | 0.0056 | 0.8825 | - |
| 3.1931 | 21250 | 0.0041 | 0.0056 | 0.8884 | - |
| 3.2307 | 21500 | 0.004 | 0.0054 | 0.8872 | - |
| 3.2682 | 21750 | 0.0044 | 0.0052 | 0.8838 | - |
| 3.3058 | 22000 | 0.0036 | 0.0053 | 0.8904 | - |
| 3.3434 | 22250 | 0.0036 | 0.0054 | 0.8898 | - |
| 3.3809 | 22500 | 0.0037 | 0.0051 | 0.8938 | - |
| 3.4185 | 22750 | 0.0036 | 0.0051 | 0.8953 | - |
| 3.4560 | 23000 | 0.0036 | 0.0051 | 0.8935 | - |
| 3.4936 | 23250 | 0.004 | 0.0049 | 0.8955 | - |
| 3.5312 | 23500 | 0.0033 | 0.0051 | 0.8912 | - |
| 3.5687 | 23750 | 0.0037 | 0.0048 | 0.8995 | - |
| 3.6063 | 24000 | 0.0037 | 0.0048 | 0.8887 | - |
| 3.6439 | 24250 | 0.0037 | 0.0048 | 0.8921 | - |
| 3.6814 | 24500 | 0.0034 | 0.0046 | 0.9001 | - |
| 3.7190 | 24750 | 0.0041 | 0.0048 | 0.9008 | - |
| 3.7566 | 25000 | 0.0037 | 0.0048 | 0.8928 | - |
| 3.7941 | 25250 | 0.0038 | 0.0049 | 0.8949 | - |
| 3.8317 | 25500 | 0.0037 | 0.0045 | 0.9029 | - |
| 3.8693 | 25750 | 0.0034 | 0.0057 | 0.8962 | - |
| 3.9068 | 26000 | 0.0035 | 0.0047 | 0.8963 | - |
| 3.9444 | 26250 | 0.0039 | 0.0044 | 0.9026 | - |
| 3.9820 | 26500 | 0.0034 | 0.0044 | 0.8994 | - |
| 4.0195 | 26750 | 0.0029 | 0.0042 | 0.9039 | - |
| 4.0571 | 27000 | 0.0025 | 0.0040 | 0.9047 | - |
| 4.0947 | 27250 | 0.0027 | 0.0041 | 0.9033 | - |
| 4.1322 | 27500 | 0.0027 | 0.0041 | 0.9034 | - |
| 4.1698 | 27750 | 0.0025 | 0.0040 | 0.9040 | - |
| 4.2074 | 28000 | 0.0033 | 0.0041 | 0.9079 | - |
| 4.2449 | 28250 | 0.0027 | 0.0040 | 0.9078 | - |
| 4.2825 | 28500 | 0.0024 | 0.0040 | 0.9059 | - |
| 4.3201 | 28750 | 0.0026 | 0.0040 | 0.9084 | - |
| 4.3576 | 29000 | 0.0021 | 0.0039 | 0.9101 | - |
| 4.3952 | 29250 | 0.0024 | 0.0040 | 0.9081 | - |
| 4.4328 | 29500 | 0.0024 | 0.0039 | 0.9128 | - |
| 4.4703 | 29750 | 0.0027 | 0.0039 | 0.9067 | - |
| 4.5079 | 30000 | 0.003 | 0.0038 | 0.9120 | - |
| 4.5455 | 30250 | 0.0024 | 0.0037 | 0.9140 | - |
| 4.5830 | 30500 | 0.0025 | 0.0037 | 0.9116 | - |
| 4.6206 | 30750 | 0.0023 | 0.0037 | 0.9124 | - |
| 4.6582 | 31000 | 0.0026 | 0.0036 | 0.9161 | - |
| 4.6957 | 31250 | 0.0021 | 0.0036 | 0.9155 | - |
| 4.7333 | 31500 | 0.0025 | 0.0035 | 0.9147 | - |
| 4.7708 | 31750 | 0.0023 | 0.0035 | 0.9171 | - |
| 4.8084 | 32000 | 0.0024 | 0.0035 | 0.9153 | - |
| 4.8460 | 32250 | 0.002 | 0.0035 | 0.9153 | - |
| 4.8835 | 32500 | 0.0025 | 0.0034 | 0.9173 | - |
| 4.9211 | 32750 | 0.0018 | 0.0035 | 0.9180 | - |
| 4.9587 | 33000 | 0.0021 | 0.0035 | 0.9201 | - |
| 4.9962 | 33250 | 0.0019 | 0.0035 | 0.9205 | - |
| 5.0338 | 33500 | 0.0016 | 0.0034 | 0.9223 | - |
| 5.0714 | 33750 | 0.0016 | 0.0034 | 0.9217 | - |
| 5.1089 | 34000 | 0.0015 | 0.0033 | 0.9208 | - |
| 5.1465 | 34250 | 0.002 | 0.0034 | 0.9234 | - |
| 5.1841 | 34500 | 0.0017 | 0.0033 | 0.9212 | - |
| 5.2216 | 34750 | 0.002 | 0.0033 | 0.9212 | - |
| 5.2592 | 35000 | 0.0015 | 0.0032 | 0.9241 | - |
| 5.2968 | 35250 | 0.002 | 0.0031 | 0.9232 | - |
| 5.3343 | 35500 | 0.0017 | 0.0031 | 0.9251 | - |
| 5.3719 | 35750 | 0.0015 | 0.0031 | 0.9256 | - |
| 5.4095 | 36000 | 0.0018 | 0.0031 | 0.9246 | - |
| 5.4470 | 36250 | 0.0015 | 0.0030 | 0.9257 | - |
| 5.4846 | 36500 | 0.0017 | 0.0030 | 0.9261 | - |
| 5.5222 | 36750 | 0.0018 | 0.0030 | 0.9251 | - |
| 5.5597 | 37000 | 0.0016 | 0.0030 | 0.9270 | - |
| 5.5973 | 37250 | 0.0016 | 0.0029 | 0.9275 | - |
| 5.6349 | 37500 | 0.0017 | 0.0029 | 0.9283 | - |
| 5.6724 | 37750 | 0.0015 | 0.0029 | 0.9277 | - |
| 5.7100 | 38000 | 0.0017 | 0.0029 | 0.9286 | - |
| 5.7476 | 38250 | 0.0015 | 0.0029 | 0.9284 | - |
| 5.7851 | 38500 | 0.0015 | 0.0029 | 0.9286 | - |
| 5.8227 | 38750 | 0.0014 | 0.0029 | 0.9287 | - |
| 5.8603 | 39000 | 0.0015 | 0.0028 | 0.9290 | - |
| 5.8978 | 39250 | 0.0014 | 0.0028 | 0.9291 | - |
| 5.9354 | 39500 | 0.0014 | 0.0028 | 0.9293 | - |
| 5.9730 | 39750 | 0.0015 | 0.0028 | 0.9293 | - |
| 6.0 | 39930 | - | - | - | 0.9283 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```