---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:79621
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Data demografi Indonesia 2021 perempuan dan lakilaki
sentences:
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Komoditi HS, Februari
2015
- Statistik Potensi Desa Provinsi Jawa Barat 2014
- Pengeluaran untuk Konsumsi Penduduk Indonesia, September 2017
- source_sentence: Data analisis tematik kependudukan Indonesia migrasi dan ketenagakerjaan
sentences:
- Direktori Perusahaan Industri Penggilingan Padi Tahun 2012 Provinsi Bengkulu
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Juni 2023
- Luas Panen dan Produksi Padi 2022
- source_sentence: Daftar perusahaan penggilingan padi Kalimantan
sentences:
- Ringkasan Neraca Arus Dana, Triwulan II, 2011*), (Miliar Rupiah)
- Klasifikasi Baku Komoditas Indonesia 2012 Buku 1
- Statistik Penduduk Lanjut Usia Provinsi Nusa Tenggara Barat 2010-Hasil Sensus
Penduduk 2010
- source_sentence: Perdagangan luar negeri impor Januari 2010
sentences:
- Buletin Statistik Perdagangan Luar Negeri Impor Januari 2010
- Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia 2012
- Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4
- source_sentence: Biaya hidup kelompok perumahan Indonesia 2017
sentences:
- Indeks Harga Perdagangan Besar 2007
- Statistik Upah 2013
- Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo
datasets:
- yahyaabd/allstats-search-pairs-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic mpnet eval
type: allstats-semantic-mpnet-eval
metrics:
- type: pearson_cosine
value: 0.9830659002996571
name: Pearson Cosine
- type: spearman_cosine
value: 0.8410118780087822
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic mpnet test
type: allstats-semantic-mpnet-test
metrics:
- type: pearson_cosine
value: 0.9831682336847792
name: Pearson Cosine
- type: spearman_cosine
value: 0.8378561244643341
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/test-model")
# Run inference
sentences = [
'Biaya hidup kelompok perumahan Indonesia 2017',
'Statistik Upah 2013',
'Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-mpnet-eval` and `allstats-semantic-mpnet-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-mpnet-eval | allstats-semantic-mpnet-test |
|:--------------------|:-----------------------------|:-----------------------------|
| pearson_cosine | 0.9831 | 0.9832 |
| **spearman_cosine** | **0.841** | **0.8379** |
## Training Details
### Training Dataset
#### allstats-search-pairs-dataset
* Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
* Size: 79,621 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details |
Produksi jagung di Indonesia tahun 2009
| Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2024
| 0.1
|
| Data produksi industri manufaktur 2021
| Perkembangan Indeks Produksi Industri Manufaktur 2021
| 0.96
|
| direktori perusahaan industri penggilingan padi tahun 2012 provinsi sulawesi utara dan gorontalo
| Neraca Pemerintahan Umum Indonesia 2007-2012
| 0.03
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-search-pairs-dataset
* Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
* Size: 9,952 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
| type | string | string | float |
| details | Daftar perusahaan industri pengolahan skala kecil 2006
| Statistik Migrasi Nusa Tenggara Barat Hasil SP 2010
| 0.05
|
| Populasi Indonesia per provinsi 2000-2010
| Indikator Ekonomi Desember 2023
| 0.08
|
| Data harga barang desa non-pangan tahun 2022
| Statistik Kunjungan Tamu Asing 2004
| 0.1
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 6
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
- `label_smoothing_factor`: 0.01
- `eval_on_start`: True
#### All Hyperparameters