--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - arrow metrics: - wer model-index: - name: demo_whisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: arrow type: arrow config: default split: None args: default metrics: - name: Wer type: wer value: 47.00413223140496 --- # demo_whisper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.6383 - Wer Ortho: 59.3622 - Wer: 47.0041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cpu - Datasets 3.0.0 - Tokenizers 0.19.1