--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Approved PRNG initial seeds and seed keys used for initialization are securely stored in flash memory. - text: ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved RNG Volatile memory only (plaintext) Zeroized when the module reboots. - text: PRNG ANSI X9.31 Key K1, K2 Internal 3DES Key Automatically Generated per seeding This is an internal key used for ANSI X9.31 192 bits Internal Key generate from the seed and seed key - text: PRNG Seed Key A new ANSI X9.31 RNG Seed Key is generated from a block of 160 bits output by the random noise source software library. - text: FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key Hard-coded in the module. inference: true --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5") # Run inference preds = model("FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key Hard-coded in the module.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 19.1778 | 53 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 22 | | positive | 23 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0294 | 1 | 0.2337 | - | | 1.0 | 34 | - | 0.1687 | | 1.4706 | 50 | 0.1015 | - | | 2.0 | 68 | - | 0.1004 | | 2.9412 | 100 | 0.0006 | - | | 3.0 | 102 | - | 0.1020 | | 4.0 | 136 | - | 0.1021 | ### Framework Versions - Python: 3.10.15 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.3.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Datasets: 2.19.1 - Tokenizers: 0.20.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```