--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - trl - sft - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-wnut_17-full results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.6038781163434903 - name: Recall type: recall value: 0.4040778498609824 - name: F1 type: f1 value: 0.484175458078845 - name: Accuracy type: accuracy value: 0.9478859390363815 --- # distilbert-base-uncased-wnut_17-full This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3599 - Precision: 0.6039 - Recall: 0.4041 - F1: 0.4842 - Accuracy: 0.9479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2609 | 0.5911 | 0.3309 | 0.4242 | 0.9420 | | No log | 2.0 | 426 | 0.2808 | 0.5679 | 0.3373 | 0.4233 | 0.9447 | | 0.133 | 3.0 | 639 | 0.3328 | 0.6591 | 0.3244 | 0.4348 | 0.9461 | | 0.133 | 4.0 | 852 | 0.3302 | 0.5976 | 0.3689 | 0.4562 | 0.9465 | | 0.0224 | 5.0 | 1065 | 0.3142 | 0.4955 | 0.4041 | 0.4451 | 0.9445 | | 0.0224 | 6.0 | 1278 | 0.3599 | 0.6039 | 0.4041 | 0.4842 | 0.9479 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1