--- license: cc-by-4.0 language: - kk metrics: - seqeval pipeline_tag: token-classification tags: - Named Entity Recognition - NER widget: - text: >- Қазақстан Республикасы — Шығыс Еуропа мен Орталық Азияда орналасқан мемлекет. example_title: Example 1 - text: Ахмет Байтұрсынұлы — қазақ тілінің дыбыстық жүйесін алғашқы құрған ғалым. example_title: Example 2 - text: >- Қазақстан мен ЕуроОдақ арасындағы тауар айналым былтыр 38% өсіп, 40 миллиард долларға жетті. Екі тарап серіктестікті одан әрі нығайтуға мүдделі. Атап айтсақ, Қазақстан Еуропаға құны 2 млрд доллардан асатын 175 тауар экспорттын ұлғайтуға дайын. example_title: Example 3 datasets: - yeshpanovrustem/kaznerd_cleaned --- # A Named Entity Recognition Model for Kazakh - The model was inspired by the [LREC 2022](https://lrec2022.lrec-conf.org/en/) paper [*KazNERD: Kazakh Named Entity Recognition Dataset*](https://aclanthology.org/2022.lrec-1.44). - The model was trained for 3 epochs on [*kaznerd_cleaned*](https://huggingface.co/datasets/yeshpanovrustem/kaznerd_cleaned). - The original repository for the paper can be found at *https://github.com/IS2AI/KazNERD*. ## How to use You can use this model with the Transformers pipeline for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh") model = AutoModelForTokenClassification.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh") nlp = pipeline("ner", model = model, tokenizer = tokenizer) example = "Қазақстан Республикасы — Шығыс Еуропа мен Орталық Азияда орналасқан мемлекет." ner_results = nlp(example) print(ner_results) ``` ## Evaluation results on the validation and test sets | | Validation set | | | Test set| | |:---:| :---: | :---: | :---: | :---: | :---: | | **Precision** | **Recall** | **F1-score** | **Precision** | **Recall** | **F1-score** | | 96.58% | 96.66% | 96.62% | 96.49% | 96.86% | 96.67% | ## Model performance for the NE classes of the validation set | NE Class | Precision | Recall | F1-score | Support | | :---: | :---: | :---: | :---: | :---: | | **ADAGE** | 90.00% | 47.37% | 62.07% | 19 | | **ART** | 91.36% | 95.48% | 93.38% | 155 | | **CARDINAL** | 98.44% | 98.37% | 98.40% | 2,878 | | **CONTACT** | 100.00% | 83.33% | 90.91% | 18 | | **DATE** | 97.38% | 97.27% | 97.33% | 2,603 | | **DISEASE** | 96.72% | 97.52% | 97.12% | 121 | | **EVENT** | 83.24% | 93.51% | 88.07% | 154 | | **FACILITY** | 68.95% | 84.83% | 76.07% | 178 | | **GPE** | 98.46% | 96.50% | 97.47% | 1,656 | | **LANGUAGE** | 95.45% | 89.36% | 92.31% | 47 | | **LAW** | 87.50% | 87.50% | 87.50% | 56 | | **LOCATION** | 92.49% | 93.81% | 93.14% | 210 | | **MISCELLANEOUS** | 100.00% | 76.92% | 86.96% | 26 | | **MONEY** | 99.56% | 100.00% | 99.78% | 455 | | **NON_HUMAN** | 0.00% | 0.00% | 0.00% | 1 | | **NORP** | 95.71% | 95.45% | 95.58% | 374 | | **ORDINAL** | 98.14% | 95.84% | 96.98% | 385 | | **ORGANISATION** | 92.19% | 90.97% | 91.58% | 753 | | **PERCENTAGE** | 99.08% | 99.08% | 99.08% | 437 | | **PERSON** | 98.47% | 98.72% | 98.60% | 1,175 | | **POSITION** | 96.15% | 97.79% | 96.96% | 587 | | **PRODUCT** | 89.06% | 78.08% | 83.21% | 73 | | **PROJECT** | 92.13% | 95.22% | 93.65% | 209 | | **QUANTITY** | 97.58% | 98.30% | 97.94% | 411 | | **TIME** | 94.81% | 96.63% | 95.71% | 208 | | **micro avg** | **96.58%** | **96.66%** | **96.62%** | **13,189** | | **macro avg** | **90.12%** | **87.51%** | **88.39%** | **13,189** | | **weighted avg** | **96.67%** | **96.66%** | **96.63%** | **13,189** | ## Model performance for the NE classes of the test set | NE Class | Precision | Recall | F1-score | Support | | :---: | :---: | :---: | :---: | :---: | | **ADAGE** | 71.43% | 29.41% | 41.67% | 17 | | **ART** | 95.71% | 96.89% | 96.30% | 161 | | **CARDINAL** | 98.43% | 98.60% | 98.51% | 2,789 | | **CONTACT** | 94.44% | 85.00% | 89.47% | 20 | | **DATE** | 96.59% | 97.60% | 97.09% | 2,584 | | **DISEASE** | 87.69% | 95.80% | 91.57% | 119 | | **EVENT** | 86.67% | 92.86% | 89.66% | 154 | | **FACILITY** | 74.88% | 81.73% | 78.16% | 197 | | **GPE** | 98.57% | 97.81% | 98.19% | 1,691 | | **LANGUAGE** | 90.70% | 95.12% | 92.86% | 41 | | **LAW** | 93.33% | 76.36% | 84.00% | 55 | | **LOCATION** | 92.08% | 89.42% | 90.73% | 208 | | **MISCELLANEOUS** | 86.21% | 96.15% | 90.91% | 26 | | **MONEY** | 100.00% | 100.00% | 100.00% | 427 | | **NON_HUMAN** | 0.00% | 0.00% | 0.00% | 1 | | **NORP** | 99.46% | 99.18% | 99.32% | 368 | | **ORDINAL** | 96.63% | 97.64% | 97.14% | 382 | | **ORGANISATION** | 90.97% | 91.23% | 91.10% | 718 | | **PERCENTAGE** | 98.05% | 98.05% | 98.05% | 462 | | **PERSON** | 98.70% | 99.13% | 98.92% | 1,151 | | **POSITION** | 96.36% | 97.65% | 97.00% | 597 | | **PRODUCT** | 89.23% | 77.33% | 82.86% | 75 | | **PROJECT** | 93.69% | 93.69% | 93.69% | 206 | | **QUANTITY** | 97.26% | 97.02% | 97.14% | 403 | | **TIME** | 94.95% | 94.09% | 94.52% | 220 | | **micro avg** | **96.54%** | **96.85%** | **96.69%** | **13,072** | | **macro avg** | **88.88%** | **87.11%** | **87.55%** | **13,072** | | **weighted avg** | **96.55%** | **96.85%** | **96.67%** | **13,072** |