--- language: - ko - en base_model: ./reduced_model tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart_cycle0_ko-en results: [] --- # mbart_cycle0_ko-en This model is a fine-tuned version of reduced mbart-large-cc25(https://huggingface.co/facebook/mbart-large-cc25) on an custom dataset. It achieves the following results on the evaluation set: - Loss: 8.0362 - Bleu: 3.9193 - Gen Len: 19.5758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 8.5105 | 10.0 | 500 | 5.7366 | 1.0483 | 32.2222 | | 1.3079 | 20.0 | 1000 | 7.1497 | 3.8281 | 17.3838 | | 0.179 | 30.0 | 1500 | 7.7171 | 4.1437 | 18.6869 | | 0.0535 | 40.0 | 2000 | 7.9881 | 4.1251 | 18.5455 | | 0.0203 | 50.0 | 2500 | 8.0362 | 3.9193 | 19.5758 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3