--- license: mit license_link: https://huggingface.co/microsoft/Florence-2-base-ft/resolve/main/LICENSE pipeline_tag: image-text-to-text tags: - vision - ocr - segmentation --- # TF-ID: Table/Figure IDentifier for academic papers ## Model Summary TF-ID (Table/Figure IDentifier) is a family of object detection models finetuned to extract tables and figures in academic papers created by [Yifei Hu](https://x.com/hu_yifei). They come in four versions: | Model | Model size | Model Description | | ------- | ------------- | ------------- | | TF-ID-base[[HF]](https://huggingface.co/yifeihu/TF-ID-base) | 0.23B | Extract tables/figures and their caption text | TF-ID-large[[HF]](https://huggingface.co/yifeihu/TF-ID-large) (Recommended) | 0.77B | Extract tables/figures and their caption text | TF-ID-base-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-base-no-caption) | 0.23B | Extract tables/figures without caption text | TF-ID-large-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-large-no-caption) (Recommended) | 0.77B | Extract tables/figures without caption text All TF-ID models are finetuned from [microsoft/Florence-2](https://huggingface.co/microsoft/Florence-2-large-ft) checkpoints. - The models were finetuned with papers from Hugging Face Daily Papers. All bounding boxes are manually annotated and checked by humans. - TF-ID models take an image of a single paper page as the input, and return bounding boxes for all tables and figures in the given page. - TF-ID-base and TF-ID-large draw bounding boxes around tables/figures and their caption text. - TF-ID-base-no-caption and TF-ID-large-no-caption draw bounding boxes around tables/figures without their caption text. **Large models are always recommended!** ![image/png](https://huggingface.co/yifeihu/TF-ID-base/resolve/main/td-id-caption.png) Object Detection results format: {'\': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} } ## Training Code and Dataset - Dataset: [yifeihu/TF-ID-arxiv-papers](https://huggingface.co/datasets/yifeihu/TF-ID-arxiv-papers) - Code: [github.com/ai8hyf/TF-ID](https://github.com/ai8hyf/TF-ID) ## Benchmarks We tested the models on paper pages outside the training dataset. The papers are a subset of huggingface daily paper. Correct output - the model draws correct bounding boxes for every table/figure in the given page. | Model | Total Images | Correct Output | Success Rate | |---------------------------------------------------------------|--------------|----------------|--------------| | TF-ID-base[[HF]](https://huggingface.co/yifeihu/TF-ID-base) | 258 | 251 | 97.29% | | TF-ID-large[[HF]](https://huggingface.co/yifeihu/TF-ID-large) | 258 | 253 | 98.06% | | Model | Total Images | Correct Output | Success Rate | |---------------------------------------------------------------|--------------|----------------|--------------| | TF-ID-base-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-base-no-caption) | 261 | 253 | 96.93% | | TF-ID-large-no-caption[[HF]](https://huggingface.co/yifeihu/TF-ID-large-no-caption) | 261 | 254 | 97.32% | Depending on the use cases, some "incorrect" output could be totally usable. For example, the model draw two bounding boxes for one figure with two child components. ## How to Get Started with the Model Use the code below to get started with the model. ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("yifeihu/TF-ID-base", trust_remote_code=True) processor = AutoProcessor.from_pretrained("yifeihu/TF-ID-base", trust_remote_code=True) prompt = "" url = "https://huggingface.co/yifeihu/TF-ID-base/resolve/main/arxiv_2305_10853_5.png?download=true" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task="", image_size=(image.width, image.height)) print(parsed_answer) ``` To visualize the results, see [this tutorial notebook](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-florence-2-on-detection-dataset.ipynb) for more details. ## BibTex and citation info ``` @misc{TF-ID, author = {Yifei Hu}, title = {TF-ID: Table/Figure IDentifier for academic papers}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/ai8hyf/TF-ID}}, } ```