{ "_name_or_path": "microsoft/resnet-101", "architectures": [ "ResNetForImageClassification" ], "depths": [ 3, 4, 23, 3 ], "downsample_in_first_stage": false, "embedding_size": 64, "hidden_act": "relu", "hidden_sizes": [ 256, 512, 1024, 2048 ], "id2label": { "0": "beverage cans", "1": "cardboard", "10": "laptops", "11": "masks", "12": "medicines", "13": "metal containers", "14": "news paper", "15": "other metal objects", "16": "paper", "17": "paper cups", "18": "plastic bags", "19": "plastic bottles", "2": "cigarette butt", "20": "plastic containers", "21": "plastic cups", "22": "small appliances", "23": "smartphones", "24": "spray cans", "25": "syringe", "26": "tetra pak", "3": "clothes", "4": "compost", "5": "construction scrap", "6": "electrical cables", "7": "electronic chips", "8": "glass", "9": "gloves" }, "label2id": { "beverage cans": "0", "cardboard": "1", "cigarette butt": "2", "clothes": "3", "compost": "4", "construction scrap": "5", "electrical cables": "6", "electronic chips": "7", "glass": "8", "gloves": "9", "laptops": "10", "masks": "11", "medicines": "12", "metal containers": "13", "news paper": "14", "other metal objects": "15", "paper": "16", "paper cups": "17", "plastic bags": "18", "plastic bottles": "19", "plastic containers": "20", "plastic cups": "21", "small appliances": "22", "smartphones": "23", "spray cans": "24", "syringe": "25", "tetra pak": "26" }, "layer_type": "bottleneck", "model_type": "resnet", "num_channels": 3, "out_features": [ "stage4" ], "out_indices": [ 4 ], "problem_type": "single_label_classification", "stage_names": [ "stem", "stage1", "stage2", "stage3", "stage4" ], "torch_dtype": "float32", "transformers_version": "4.30.2" }