--- language: - tr base_model: ylacombe/w2v-bert-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_16_0 - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: wav2vec2-common_voice-tr-demo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - TR type: common_voice_16_0 config: tr split: test args: 'Config: tr, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 1.0 --- # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.007448827845832091 - train_batch_size: 20 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.27 | 300 | 3.2930 | 1.0 | | 5.6462 | 0.55 | 600 | 3.4159 | 1.0 | | 5.6462 | 0.82 | 900 | 3.4422 | 1.0 | | 3.3522 | 1.1 | 1200 | 3.3719 | 1.0 | | 3.2605 | 1.37 | 1500 | 3.4026 | 1.0 | | 3.2605 | 1.64 | 1800 | 3.4448 | 1.0 | | 3.2766 | 1.92 | 2100 | 3.4736 | 0.9999 | | 3.2766 | 2.19 | 2400 | 3.9828 | 1.0 | | 3.2853 | 2.47 | 2700 | 3.5532 | 1.0 | | 3.3389 | 2.74 | 3000 | 3.7819 | 1.0 | | 3.3389 | 3.01 | 3300 | 3.2250 | 1.0 | | 3.2186 | 3.29 | 3600 | 3.2373 | 1.0 | | 3.2186 | 3.56 | 3900 | 3.2162 | 1.0 | | 3.1916 | 3.84 | 4200 | 3.2368 | 1.0 | | 3.2188 | 4.11 | 4500 | 3.2377 | 1.0 | | 3.2188 | 4.38 | 4800 | 3.4207 | 1.0 | | 5.3067 | 4.66 | 5100 | nan | 1.0 | | 5.3067 | 4.93 | 5400 | nan | 1.0 | | 0.0 | 5.21 | 5700 | nan | 1.0 | | 0.0 | 5.48 | 6000 | nan | 1.0 | | 0.0 | 5.75 | 6300 | nan | 1.0 | | 0.0 | 6.03 | 6600 | nan | 1.0 | | 0.0 | 6.3 | 6900 | nan | 1.0 | | 0.0 | 6.58 | 7200 | nan | 1.0 | | 0.0 | 6.85 | 7500 | nan | 1.0 | | 0.0 | 7.12 | 7800 | nan | 1.0 | | 0.0 | 7.4 | 8100 | nan | 1.0 | | 0.0 | 7.67 | 8400 | nan | 1.0 | | 0.0 | 7.95 | 8700 | nan | 1.0 | | 0.0 | 8.22 | 9000 | nan | 1.0 | | 0.0 | 8.49 | 9300 | nan | 1.0 | | 0.0 | 8.77 | 9600 | nan | 1.0 | | 0.0 | 9.04 | 9900 | nan | 1.0 | | 0.0 | 9.32 | 10200 | nan | 1.0 | | 0.0 | 9.59 | 10500 | nan | 1.0 | | 0.0 | 9.86 | 10800 | nan | 1.0 | | 0.0 | 10.14 | 11100 | nan | 1.0 | | 0.0 | 10.41 | 11400 | nan | 1.0 | | 0.0 | 10.68 | 11700 | nan | 1.0 | | 0.0 | 10.96 | 12000 | nan | 1.0 | | 0.0 | 11.23 | 12300 | nan | 1.0 | | 0.0 | 11.51 | 12600 | nan | 1.0 | | 0.0 | 11.78 | 12900 | nan | 1.0 | | 0.0 | 12.05 | 13200 | nan | 1.0 | | 0.0 | 12.33 | 13500 | nan | 1.0 | | 0.0 | 12.6 | 13800 | nan | 1.0 | | 0.0 | 12.88 | 14100 | nan | 1.0 | | 0.0 | 13.15 | 14400 | nan | 1.0 | | 0.0 | 13.42 | 14700 | nan | 1.0 | | 0.0 | 13.7 | 15000 | nan | 1.0 | | 0.0 | 13.97 | 15300 | nan | 1.0 | | 0.0 | 14.25 | 15600 | nan | 1.0 | | 0.0 | 14.52 | 15900 | nan | 1.0 | | 0.0 | 14.79 | 16200 | nan | 1.0 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.15.0