--- library_name: transformers language: - multilingual - bn - cs - de - en - et - fi - fr - gu - ha - hi - is - ja - kk - km - lt - lv - pl - ps - ru - ta - tr - uk - xh - zh - zu license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - quality-estimation - regression - generated_from_trainer datasets: - ymoslem/wmt-da-human-evaluation model-index: - name: Quality Estimation for Machine Translation results: - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation type: QE metrics: - name: Pearson Correlation type: Pearson value: 0.4589 - name: Mean Absolute Error type: MAE value: 0.1861 - name: Root Mean Squared Error type: RMSE value: 0.2375 --- # Quality Estimation for Machine Translation This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the [ymoslem/wmt-da-human-evaluation](https://huggingface.co/ymoslem/wmt-da-human-evaluation) dataset. It achieves the following results on the evaluation set: - Loss: 0.0564 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.0631 | 0.1004 | 1000 | 0.0674 | | 0.0614 | 0.2007 | 2000 | 0.0599 | | 0.0578 | 0.3011 | 3000 | 0.0585 | | 0.0585 | 0.4015 | 4000 | 0.0579 | | 0.0568 | 0.5019 | 5000 | 0.0570 | | 0.057 | 0.6022 | 6000 | 0.0568 | | 0.0579 | 0.7026 | 7000 | 0.0567 | | 0.0573 | 0.8030 | 8000 | 0.0565 | | 0.0568 | 0.9033 | 9000 | 0.0564 | | 0.0571 | 1.0037 | 10000 | 0.0564 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0 ## Inference 1. Install the required libraries. ```bash pip3 install --upgrade datasets accelerate transformers pip3 install --upgrade flash_attn triton ``` 2. Load the test dataset. ```python from datasets import load_dataset test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation", split="test", trust_remote_code=True ) print(test_dataset) ``` 3. Load the model and tokenizer: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load the fine-tuned model and tokenizer model_name = "ymoslem/ModernBERT-large-qe-v1" model = AutoModelForSequenceClassification.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Move model to GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() ``` 4. Prepare the dataset. Each source segment `src` and target segment `tgt` are separated by the `sep_token`, which is `''` for ModernBERT. ```python sep_token = tokenizer.sep_token input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])] ``` 5. Generate predictions. If you print `model.config.problem_type`, the output is `regression`. Still, you can use the "text-classification" pipeline as follows (cf. [pipeline documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TextClassificationPipeline)): ```python from transformers import pipeline classifier = pipeline("text-classification", model=model_name, tokenizer=tokenizer, device=0, ) predictions = classifier(input_test_texts, batch_size=128, truncation=True, padding="max_length", max_length=tokenizer.model_max_length, ) predictions = [prediction["score"] for prediction in predictions] ``` Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control. ```python from torch.utils.data import DataLoader import torch from tqdm.auto import tqdm # Tokenization function def process_batch(batch, tokenizer, device): sep_token = tokenizer.sep_token input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])] tokens = tokenizer(input_texts, truncation=True, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ).to(device) return tokens # Create a DataLoader for batching test_dataloader = DataLoader(test_dataset, batch_size=128, # Adjust batch size as needed shuffle=False) # List to store all predictions predictions = [] with torch.no_grad(): for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"): tokens = process_batch(batch, tokenizer, device) # Forward pass: Generate model's logits outputs = model(**tokens) # Get logits (predictions) logits = outputs.logits # Extract the regression predicted values batch_predictions = logits.squeeze() # Extend the list with the predictions predictions.extend(batch_predictions.tolist()) ```