--- license: apache-2.0 base_model: openai/whisper-small tags: - audio - automatic-speech-recognition metrics: - wer widget: - example_title: Sample 1 src: sample_ar_1.mp3 - example_title: Sample 2 src: sample_ar_2.mp3 model-index: - name: whisper-small-ar-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: ar split: test args: ar metrics: - name: Wer type: wer value: 47.726437288634024 language: - ar library_name: transformers pipeline_tag: automatic-speech-recognition datasets: - mozilla-foundation/common_voice_16_1 --- # whisper-small-ar-v2 This model is for Arabic automatic speech recognition (ASR). It is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Arabic portion of the [mozilla-foundation/common_voice_16_1](https://huggingface.co/datasets/mozilla-foundation/common_voice_16_1) dataset. It achieves the following results on the evaluation set: - Loss: 0.4007 - Wer: 47.7264 ## Model description Whisper model fine-tuned on Arabic data, following the [official tutorial](https://huggingface.co/blog/fine-tune-whisper). ## Intended uses & limitations It is recommended to fine-tune and evaluate on your data before using it. ## Training and evaluation data Training Data: CommonVoice (v16.1) Arabic train + validation splits Validation Data: CommonVoice (v16.1) Arabic test split ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2742 | 0.82 | 1000 | 0.3790 | 275.2463 | | 0.1625 | 1.65 | 2000 | 0.3353 | 228.5252 | | 0.1002 | 2.47 | 3000 | 0.3311 | 238.8858 | | 0.0751 | 3.3 | 4000 | 0.3354 | 158.1532 | | 0.0601 | 4.12 | 5000 | 0.3576 | 48.9285 | | 0.0612 | 4.95 | 6000 | 0.3575 | 47.8937 | | 0.0383 | 5.77 | 7000 | 0.3819 | 46.9085 | | 0.0234 | 6.6 | 8000 | 0.4007 | 47.7264 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2