--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is randomly initialized, using the config from [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) but with smaller size. Codes: ```python from transformers import pipeline from huggingface_hub import create_repo, upload_folder import torch import transformers import os model_id = 'google/gemma-2-27b-it' save_path = '/tmp/yujiepan/gemma-2-tiny-random' repo_id = 'yujiepan/gemma-2-tiny-random' config = transformers.AutoConfig.from_pretrained(model_id) config.hidden_size = 8 config.head_dim = 2 config.intermediate_size = 16 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.num_key_value_heads = 2 tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) tokenizer.save_pretrained(save_path) model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) model.generation_config = transformers.GenerationConfig.from_pretrained(model_id) with torch.no_grad(): for p in model.parameters(): torch.nn.init.uniform_(p, -0.1, 0.1) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda') print(pipe('Hello World!')) model.save_pretrained(save_path) os.system(f'ls -alh {save_path}') create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path) ```