--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized using the config from [meta-llama/Llama-3.2-90B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-90B-Vision-Instruct) but with smaller size. Codes: ```python import os import accelerate import requests import torch import transformers from huggingface_hub import create_repo, upload_folder from PIL import Image from transformers import AutoProcessor, MllamaForConditionalGeneration from transformers.models.mllama import MllamaConfig model_id = 'meta-llama/Llama-3.2-90B-Vision-Instruct' repo_id = 'yujiepan/llama-3.2-vision-tiny-random' save_path = f'/tmp/{repo_id}' os.system(f'rm -rf {save_path}') config = transformers.AutoConfig.from_pretrained( model_id, trust_remote_code=True, ) config.text_config.hidden_size = 8 config.text_config.intermediate_size = 16 config.text_config.num_attention_heads = 2 config.text_config.num_key_value_heads = 1 config.text_config.num_hidden_layers = 2 config.text_config.cross_attention_layers = [1] config.vision_config.attention_heads = 2 config.vision_config.hidden_size = 8 config.vision_config.intermediate_size = 16 config.vision_config.intermediate_layers_indices = [0] config.vision_config.num_global_layers = 1 config.vision_config.num_hidden_layers = 3 config.vision_config.vision_output_dim = 16 transformers.set_seed(42) model = MllamaForConditionalGeneration(config) model.generation_config = transformers.GenerationConfig.from_pretrained( model_id) model = model.to(torch.bfloat16) transformers.set_seed(42) with torch.no_grad(): for p in model.parameters(): torch.nn.init.normal_(p) model.save_pretrained(save_path) processor = AutoProcessor.from_pretrained(model_id) processor.save_pretrained(save_path) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" image = Image.open(requests.get(url, stream=True).raw) messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "If I had to write a haiku for this one, it would be: "} ]} ] input_text = processor.apply_chat_template( messages, add_generation_prompt=True) inputs = processor(image, input_text, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=30) print(processor.decode(output[0])) os.system(f'ls -alh {save_path}') # os.system(f'rm -rf {save_path}/model.safetensors') # create_repo(repo_id, exist_ok=True) # upload_folder(repo_id=repo_id, folder_path=save_path) ```