--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized using the config from [HuggingFaceTB/SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B) but with smaller size. Codes: ```python from huggingface_hub import create_repo, upload_folder from transformers import ( pipeline, set_seed, AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, ) import torch import transformers import os model_id = "HuggingFaceTB/SmolLM-1.7B" repo_id = "yujiepan/smollm-tiny-random" save_path = f"/tmp/{repo_id}" config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) config._name_or_path = model_id config.hidden_size = 8 config.intermediate_size = 16 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.num_key_value_heads = 2 print(config) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) tokenizer.save_pretrained(save_path) model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, attn_implementation="eager", trust_remote_code=True ) model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) set_seed(42) with torch.no_grad(): for _, p in sorted(model.named_parameters()): torch.nn.init.uniform_(p, -0.1, 0.1) model.save_pretrained(save_path) pipe = pipeline("text-generation", model=save_path, device="cuda", trust_remote_code=True) print(pipe("Hello World!")) # messages = [ # {"role": "system", "content": "You are a robot."}, # {"role": "user", "content": "Hi!"}, # ] # chatbot = pipeline("text-generation", model=save_path, max_length=1000, max_new_tokens=16, trust_remote_code=True) # print(chatbot(messages)) ```