--- library_name: transformers pipeline_tag: automatic-speech-recognition inference: true --- This model is for debugging. It is randomly initialized with the config from [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) but is of smaller size. Codes: ```python import os import torch from huggingface_hub import create_repo, upload_folder from transformers import ( AutoModelForCausalLM, AutoTokenizer, GenerationConfig, AutoConfig, pipeline, set_seed, ) import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoConfig from datasets import load_dataset model_id = "openai/whisper-large-v3" repo_id = "yujiepan/whisper-v3-tiny-random" save_path = f"/tmp/{repo_id}" os.system(f'rm -rf {save_path}') os.makedirs(save_path, exist_ok=True) device = "cuda" torch_dtype = torch.float16 model_id = "openai/whisper-large-v3" config = AutoConfig.from_pretrained(model_id) config.num_hidden_layers = 2 config.d_model = 8 config.decoder_attention_heads = 2 config.decoder_ffn_dim = 16 config.decoder_layers = 2 config.encoder_ffn_dim = 16 config.encoder_attention_heads = 2 config.encoder_layers = 2 model = AutoModelForSpeechSeq2Seq.from_config(config) model.to(device).to(torch_dtype) model.generation_config = GenerationConfig.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) set_seed(42) num_params = 0 with torch.no_grad(): for name, p in sorted(model.named_parameters()): print(name, p.shape) torch.nn.init.uniform_(p, -0.5, 0.5) num_params += p.numel() print("Total number of parameters:", num_params) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, torch_dtype=torch_dtype, device=device, ) sample = load_dataset( "distil-whisper/librispeech_long", "clean", split="validation", )[0]["audio"] result = pipe(sample, return_timestamps=True) print(result["text"]) create_repo(repo_id, exist_ok=True) upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model') ```