--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer - accuracy model-index: - name: trocr-small-printedkorean-deleteunusedchar results: [] --- # trocr-small-printedkorean-deleteunusedchar This model is a fine-tuned version of [team-lucid/trocr-small-korean](https://huggingface.co/team-lucid/trocr-small-korean) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1253 - Cer: 0.3884 - Wer: 0.4405 - Accuracy: 27.0903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 128 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:--------:| | 3.5404 | 0.43 | 1000 | 3.5688 | 0.5737 | 0.6446 | 17.7258 | | 3.365 | 0.85 | 2000 | 3.4212 | 0.5664 | 0.6546 | 18.0602 | | 3.266 | 1.28 | 3000 | 3.3538 | 0.5637 | 0.6815 | 18.7291 | | 3.2922 | 1.71 | 4000 | 3.3051 | 0.5613 | 0.7161 | 18.0602 | | 3.1287 | 2.13 | 5000 | 3.2649 | 0.5577 | 0.7164 | 18.7291 | | 3.0906 | 2.56 | 6000 | 3.2016 | 0.5572 | 0.6139 | 18.3946 | | 3.0015 | 2.99 | 7000 | 3.0851 | 0.5530 | 0.6018 | 18.3946 | | 2.7418 | 3.42 | 8000 | 2.8927 | 0.5264 | 0.6052 | 19.3980 | | 2.5107 | 3.84 | 9000 | 2.6466 | 0.4821 | 0.5881 | 19.3980 | | 2.3091 | 4.27 | 10000 | 2.4865 | 0.4545 | 0.5651 | 20.4013 | | 2.1395 | 4.7 | 11000 | 2.3749 | 0.4336 | 0.5323 | 21.7391 | | 2.0453 | 5.12 | 12000 | 2.3070 | 0.4222 | 0.5157 | 21.7391 | | 2.0421 | 5.55 | 13000 | 2.2667 | 0.4143 | 0.5001 | 24.0803 | | 2.0085 | 5.98 | 14000 | 2.2201 | 0.4060 | 0.4809 | 24.0803 | | 1.8766 | 6.4 | 15000 | 2.1988 | 0.4026 | 0.4766 | 23.7458 | | 1.8987 | 6.83 | 16000 | 2.1788 | 0.3969 | 0.4658 | 24.4147 | | 1.8921 | 7.26 | 17000 | 2.1702 | 0.3955 | 0.4581 | 24.4147 | | 1.8253 | 7.69 | 18000 | 2.1554 | 0.3938 | 0.4513 | 26.7559 | | 1.8281 | 8.11 | 19000 | 2.1481 | 0.3925 | 0.4534 | 26.0870 | | 1.8751 | 8.54 | 20000 | 2.1419 | 0.3905 | 0.4500 | 26.0870 | | 1.8226 | 8.97 | 21000 | 2.1317 | 0.3905 | 0.4439 | 26.7559 | | 1.813 | 9.39 | 22000 | 2.1285 | 0.3895 | 0.4407 | 26.0870 | | 1.7472 | 9.82 | 23000 | 2.1253 | 0.3884 | 0.4405 | 27.0903 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu116 - Datasets 2.14.4 - Tokenizers 0.13.3