--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # hubert-base-ls960-finetuned-gtzan This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6527 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1249 | 1.0 | 112 | 1.9377 | 0.43 | | 1.6556 | 2.0 | 225 | 1.5867 | 0.47 | | 1.2564 | 3.0 | 337 | 1.2670 | 0.56 | | 1.0786 | 4.0 | 450 | 1.1080 | 0.59 | | 0.895 | 5.0 | 562 | 0.8518 | 0.75 | | 0.7177 | 6.0 | 675 | 1.0047 | 0.7 | | 0.964 | 7.0 | 787 | 0.7430 | 0.75 | | 0.4107 | 8.0 | 900 | 1.0347 | 0.71 | | 0.4166 | 9.0 | 1012 | 0.5399 | 0.85 | | 0.1234 | 10.0 | 1125 | 0.6266 | 0.83 | | 0.0902 | 11.0 | 1237 | 0.6292 | 0.84 | | 0.1211 | 12.0 | 1350 | 0.7393 | 0.84 | | 0.4082 | 13.0 | 1462 | 0.6524 | 0.85 | | 0.3442 | 14.0 | 1575 | 0.5732 | 0.86 | | 0.0913 | 14.93 | 1680 | 0.6527 | 0.84 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.3