--- language: - nan - zh license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 model-index: - name: Whisper Small nan-tw - Taiwanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_1 nan-tw type: mozilla-foundation/common_voice_16_0 config: nan-tw split: test args: nan-tw metrics: - name: CER type: cer value: 29.831606 metrics: - cer pipeline_tag: automatic-speech-recognition --- # Whisper Small nan-tw - Taiwanese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3880 - Cer: 29.8316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6846 | 0.65 | 1000 | 0.6206 | 43.9508 | | 0.3563 | 1.29 | 2000 | 0.4756 | 35.1554 | | 0.29 | 1.94 | 3000 | 0.4050 | 31.3860 | | 0.1704 | 2.58 | 4000 | 0.3880 | 29.8316 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2