--- base_model: google/pegasus-x-large tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-x-large-finetuned-samsum1000 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 46.6996 --- # pegasus-x-large-finetuned-samsum1000 This model is a fine-tuned version of [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4802 - Rouge1: 46.6996 - Rouge2: 21.5586 - Rougel: 38.1002 - Rougelsum: 41.42 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.7681 | 1.0 | 500 | 1.4689 | 47.1766 | 21.8869 | 38.8854 | 42.9534 | | 1.4626 | 2.0 | 1000 | 1.4781 | 46.6978 | 20.786 | 37.764 | 41.2028 | | 1.3591 | 3.0 | 1500 | 1.4804 | 47.1756 | 21.8821 | 38.2072 | 41.6812 | | 1.3466 | 4.0 | 2000 | 1.4804 | 46.9411 | 21.5169 | 38.18 | 41.471 | | 1.3464 | 5.0 | 2500 | 1.4803 | 46.8083 | 21.5333 | 38.1539 | 41.4872 | | 1.3353 | 6.0 | 3000 | 1.4804 | 46.6675 | 21.1336 | 37.7059 | 41.0869 | | 1.3483 | 7.0 | 3500 | 1.4803 | 46.6768 | 21.1916 | 37.7642 | 41.1696 | | 1.3536 | 8.0 | 4000 | 1.4804 | 46.7311 | 21.5169 | 38.057 | 41.42 | | 1.3533 | 9.0 | 4500 | 1.4802 | 46.6403 | 21.529 | 37.9922 | 41.3437 | | 1.3469 | 10.0 | 5000 | 1.4802 | 46.6996 | 21.5586 | 38.1002 | 41.42 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1