# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang # "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892] from __future__ import annotations from typing import TYPE_CHECKING, Optional, Tuple import torch import torch.nn as nn from einops import rearrange from fla.modules import GroupNorm from fla.modules.activations import ACT2FN from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6 if TYPE_CHECKING: from fla.models.utils import Cache class RWKV6Attention(nn.Module): def __init__( self, mode: str = 'chunk', hidden_size: int = 1024, expand_k: float = 0.5, expand_v: float = 1.0, num_heads: int = 4, gate_fn: str = 'swish', proj_low_rank_dim: int = 32, gate_low_rank_dim: int = 64, fuse_norm: bool = True, elementwise_affine: Optional[bool] = True, norm_eps: float = 1e-5, layer_idx: int = None, **kwargs ) -> RWKV6Attention: super().__init__() self.mode = mode self.hidden_size = hidden_size self.expand_k = expand_k self.expand_v = expand_v self.num_heads = num_heads self.proj_low_rank_dim = proj_low_rank_dim self.gate_low_rank_dim = gate_low_rank_dim self.key_dim = int(hidden_size * expand_k) self.value_dim = int(hidden_size * expand_v) self.layer_idx = layer_idx assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`." assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" self.head_qk_dim = self.key_dim // num_heads self.head_v_dim = self.value_dim // num_heads self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) self.x_proj = nn.Sequential( LerpLinear(hidden_size, proj_low_rank_dim * 5), nn.Tanh(), nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=False) ) self.x_bias = nn.Parameter(torch.zeros(5, hidden_size)) self.r_proj = DDLerpLinear(hidden_size, self.key_dim) self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim) self.k_proj = DDLerpLinear(hidden_size, self.key_dim) self.v_proj = DDLerpLinear(hidden_size, self.value_dim) self.g_proj = DDLerpLinear(hidden_size, self.value_dim) self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim)) # TODO: fuse GroupNorm and output gate self.g_norm = GroupNorm(self.num_heads, self.value_dim, elementwise_affine=elementwise_affine, bias=True, eps=norm_eps) self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) self.gate_fn = ACT2FN[gate_fn] self.apply(self._initialize_weights) def _initialize_weights(self, module: nn.Module): if getattr(module, "_is_hf_initialized", False): return if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) if module.bias is not None: nn.init.zeros_(module.bias) if isinstance(module, nn.Parameter): nn.init.xavier_uniform_(module, gain=2 ** -2.5) module._is_hf_initialized = True def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: if attention_mask is not None: assert len(attention_mask.shape) == 2, ( "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " "for padding purposes (0 indicating padding). " "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." ) batch_size, seq_len, hidden_size = hidden_states.shape # launching the triton kernel for just one token will actually be slower mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode last_state = None if past_key_values is not None and len(past_key_values) > self.layer_idx: last_state = past_key_values[self.layer_idx] if attention_mask is not None: hidden_states = hidden_states.mul_(attention_mask[:, -hidden_states.shape[-2]:, None]) if hidden_states.shape[1] == 1 and last_state is not None: shifted = last_state['conv_state'].unsqueeze(1) else: shifted = self.time_shift(hidden_states) if last_state is not None: shifted[:, 0] = last_state['conv_state'][0] delta = shifted - hidden_states x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim) x = torch.einsum('b t n r, h n r-> b t n h', self.x_proj[1](x), self.x_proj[2].weight.view(hidden_size, 5, -1)) r, w, k, v, g = x.add_(self.x_bias).unbind(-2) r = self.r_proj(hidden_states, r, delta) w = self.w_proj(hidden_states, w, delta) k = self.k_proj(hidden_states, k, delta) v = self.v_proj(hidden_states, v, delta) g = self.g_proj(hidden_states, g, delta) # dealing with left-padding if attention_mask is not None: v = v.mul_(attention_mask[:, -v.shape[-2]:, None]) r, w, k, v = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', h=self.num_heads), (r, w, k, v)) w = -torch.exp(w) u = self.bonus recurrent_state = last_state['recurrent_state'] if last_state is not None else None if mode == 'fused_recurrent': o, recurrent_state = fused_recurrent_rwkv6( r=r, k=k, v=v, w=w, u=u, scale=1., initial_state=recurrent_state, output_final_state=use_cache, head_first=False ) elif mode == 'chunk': o, recurrent_state = chunk_rwkv6( q=r, k=k, v=v, g=w, u=u, scale=1., initial_state=recurrent_state, output_final_state=use_cache, head_first=False ) else: raise NotImplementedError(f"Not supported mode `{mode}`.") if past_key_values is not None: past_key_values.update( recurrent_state=recurrent_state, conv_state=hidden_states[:, -1], layer_idx=self.layer_idx, offset=r.shape[2] ) o = self.g_norm(rearrange(o, '... h d -> ... (h d)')) * self.gate_fn(g) o = self.o_proj(o) return o, None, past_key_values class LoRA(nn.Module): def __init__( self, input_dim: int, output_dim: int, low_rank_dim: int, bias: Optional[bool] = True ): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.low_rank_dim = low_rank_dim self.bias = bias self.lora = nn.Sequential( nn.Linear(input_dim, low_rank_dim, bias=False), nn.Tanh(), nn.Linear(low_rank_dim, output_dim, bias=bias) ) def __repr__(self) -> str: s = f"{self.__class__.__name__}(" s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}" if not self.bias: s += f", bias={self.bias}" s += ")" return s def forward(self, x: torch.Tensor) -> torch.Tensor: return self.lora(x) class LerpLinear(nn.Module): def __init__( self, input_dim: int, output_dim: int, low_rank_dim: Optional[int] = None ): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.low_rank_dim = low_rank_dim self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) if low_rank_dim is None: self.linear = nn.Linear(input_dim, output_dim, bias=False) else: self.linear = LoRA(input_dim, output_dim, low_rank_dim) self.mu = nn.Parameter(torch.zeros(input_dim)) def __repr__(self) -> str: s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}" if self.low_rank_dim is not None: s += f", low_rank_dim={self.low_rank_dim}" s += ")" return s def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor: if delta is None: shifted = self.time_shift(x) if len(shifted.shape) == 2: shifted = shifted.unsqueeze(1) delta = shifted - x return self.linear(x + delta * self.mu) class DDLerpLinear(nn.Module): def __init__( self, input_dim: int, output_dim: int, low_rank_dim: Optional[int] = None ): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.low_rank_dim = low_rank_dim self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) if low_rank_dim is None: self.linear = nn.Linear(input_dim, output_dim, bias=False) else: self.linear = LoRA(input_dim, output_dim, low_rank_dim) def __repr__(self) -> str: s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}" if self.low_rank_dim is not None: s += f", low_rank_dim={self.low_rank_dim}" s += ")" return s def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor: if delta is None: shifted = self.time_shift(x) if len(shifted.shape) == 2: shifted = shifted.unsqueeze(1) delta = shifted - x return self.linear(x + delta * mu)