--- license: apache-2.0 tags: - generated_from_trainer datasets: - rotten_tomatoes_movie_review metrics: - accuracy - f1 model-index: - name: bert-base-cased-finetuned-rotten-tomatoes-epochs-2 results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes_movie_review type: rotten_tomatoes_movie_review args: default metrics: - name: Accuracy type: accuracy value: 0.9671669793621013 - name: F1 type: f1 value: 0.9671667193207707 --- # bert-base-cased-finetuned-rotten-tomatoes-epochs-2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the rotten_tomatoes_movie_review dataset. It achieves the following results on the evaluation set: - Loss: 0.1393 - Accuracy: 0.9672 - F1: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3186 | 1.0 | 34 | 0.1948 | 0.9484 | 0.9484 | | 0.1837 | 2.0 | 68 | 0.1393 | 0.9672 | 0.9672 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu121 - Datasets 1.16.1 - Tokenizers 0.15.0