import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix from sklearn.feature_extraction.text import TfidfVectorizer import matplotlib.pyplot as plt import seaborn as sns # 数据集 URL data_url = 'https://archive.ics.uci.edu/static/public/591/data.csv' # 加载数据集 df = pd.read_csv(data_url) # 查看数据集的前几行 print("数据集的前几行:") print(df.head()) # 数据预处理 # 将 Gender 列中的 M 和 F 转换为 1 和 0 df['Gender'] = df['Gender'].map({'M': 1, 'F': 0}) # 特征和目标 X = df[['Name', 'Count', 'Probability']] # 特征 y = df['Gender'] # 目标 # 使用 TfidfVectorizer 对 Name 特征进行处理 vectorizer = TfidfVectorizer() X_name = vectorizer.fit_transform(X['Name']) # 将 Count 和 Probability 特征与 Name 特征合并 import scipy X_combined = scipy.sparse.hstack((X_name, X[['Count', 'Probability']].values)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_combined, y, test_size=0.2, random_state=42) # 训练模型 model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test) # 输出分类报告 print("\n分类报告:") print(classification_report(y_test, y_pred)) # 可视化混淆矩阵 cm = confusion_matrix(y_test, y_pred) plt.figure(figsize=(8, 6)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Female', 'Male'], yticklabels=['Female', 'Male']) plt.ylabel('Actual') plt.xlabel('Predicted') plt.title('Confusion Matrix') plt.show() ############################################# from ucimlrepo import fetch_ucirepo # fetch dataset gender_by_name = fetch_ucirepo(id=591) # data (as pandas dataframes) X = gender_by_name.data.features y = gender_by_name.data.targets # metadata print(gender_by_name.metadata) # variable information print(gender_by_name.variables)