import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report import matplotlib.pyplot as plt import seaborn as sns # 数据集 URL data_url = 'https://archive.ics.uci.edu/static/public/17/data.csv' # 加载数据集 df = pd.read_csv(data_url) # 查看数据集的前几行 print("数据集的前几行:") print(df.head()) # 数据预处理 # 编码目标变量(将 M 和 B 转换为 1 和 0) df['Diagnosis'] = df['Diagnosis'].map({'M': 1, 'B': 0}) # 特征和目标 X = df.drop(columns=['ID', 'Diagnosis']) # 特征 y = df['Diagnosis'] # 目标 # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test) # 输出分类报告 print("\n分类报告:") print(classification_report(y_test, y_pred)) # 可视化特征重要性 feature_importances = model.feature_importances_ features = X.columns indices = range(len(features)) # 创建条形图 plt.figure(figsize=(12, 6)) sns.barplot(x=feature_importances, y=features) plt.title('特征重要性') plt.xlabel('重要性') plt.ylabel('特征') plt.show() #################################################################### from ucimlrepo import fetch_ucirepo # fetch dataset breast_cancer_wisconsin_diagnostic = fetch_ucirepo(id=17) # data (as pandas dataframes) X = breast_cancer_wisconsin_diagnostic.data.features y = breast_cancer_wisconsin_diagnostic.data.targets # metadata print(breast_cancer_wisconsin_diagnostic.metadata) # variable information print(breast_cancer_wisconsin_diagnostic.variables) ################################################################## # 0 0.96 0.99 0.97 71 # 1 0.98 0.93 0.95 43 #accuracy 0.96 114