model_name: Evolutionary Multi-Modal Model model_type: transformer license: mit language: en zh datasets: - "Custom" tags: - text-generation - code-generation - speech-recognition - multi-modal - evolutionary base_model: facebook/bart-base finetuned_from: gpt2, bert-base-uncased, facebook/wav2vec2-base-960h, openai/clip-vit-base-patch32 dataset: Custom Multi-Modal Dataset metrics: - perplexity - bleu - wer - cer library_name: transformers pipeline_tag: text-generation inference: parameters: max_length: 50 top_k: 50 top_p: 0.95 temperature: 1.2 do_sample: true speech_recognition: waveform_path: "C:/Users/baby7/Desktop/权重参数/sample-15s.wav" task: "speech_recognition" output_audio_key: "Transcription" text_generation: input_text: "What is the future of AI?" task: "text_generation" output_text_key: "Generated Text" code_generation: input_code: "def add(a, b): return" task: "code_generation" output_code_key: "Generated Code" tests: - name: speech_recognition_test waveform_path: "C:/Users/baby7/Desktop/权重参数/sample-15s.wav" expected_output: "Expected transcription" - name: text_generation_test input_text: "What is the future of AI?" expected_output: "Predicted text about AI" - name: code_generation_test input_code: "def add(a, b): return" expected_output: "def add(a, b): return a + b" extra_info: author: zero version: 1.0 description: | This Evolutionary Multi-Modal Model is designed for tasks like text generation, code generation, speech recognition, and vision understanding. It leverages the capabilities of multiple pre-trained models and applies evolutionary techniques to optimize performance across these tasks. citation: - | @article{your_reference_2025, title={Evolutionary Multi-Modal Model for Enhanced Performance}, author={Your Name}, journal={Journal of AI Research}, year={2025} }