--- language: - eu license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Small Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_1 eu type: mozilla-foundation/common_voice_16_1 config: eu split: test args: eu metrics: - name: Wer type: wer value: 12.73741597623886 --- # Whisper Small Basque This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_16_1 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.3785 - Wer: 12.7374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.0153 | 10.03 | 1000 | 0.2690 | 15.3119 | | 0.0029 | 20.05 | 2000 | 0.3132 | 15.0334 | | 0.0018 | 30.08 | 3000 | 0.3312 | 14.6113 | | 0.0009 | 40.1 | 4000 | 0.3375 | 14.0916 | | 0.0037 | 50.13 | 5000 | 0.3306 | 14.3241 | | 0.0002 | 60.15 | 6000 | 0.3628 | 13.5464 | | 0.0001 | 70.18 | 7000 | 0.3804 | 13.4985 | | 0.0001 | 80.2 | 8000 | 0.3961 | 13.5298 | | 0.0 | 90.23 | 9000 | 0.4117 | 13.5650 | | 0.0 | 100.25 | 10000 | 0.4282 | 13.6246 | | 0.0001 | 110.28 | 11000 | 0.3542 | 13.0061 | | 0.0001 | 120.3 | 12000 | 0.3697 | 13.1282 | | 0.0 | 130.33 | 13000 | 0.3874 | 12.9934 | | 0.0 | 140.35 | 14000 | 0.4002 | 12.9582 | | 0.0 | 150.38 | 15000 | 0.4120 | 12.9455 | | 0.0 | 160.4 | 16000 | 0.4246 | 12.9631 | | 0.0 | 170.43 | 17000 | 0.4369 | 13.0071 | | 0.0 | 180.45 | 18000 | 0.4501 | 13.0364 | | 0.0 | 190.48 | 19000 | 0.4638 | 13.0374 | | 0.0 | 200.5 | 20000 | 0.4786 | 13.0891 | | 0.0001 | 210.53 | 21000 | 0.3785 | 12.7374 | | 0.0 | 220.55 | 22000 | 0.4097 | 12.8166 | | 0.0 | 230.58 | 23000 | 0.4236 | 12.8175 | | 0.0 | 240.6 | 24000 | 0.4340 | 12.8039 | | 0.0 | 250.63 | 25000 | 0.4431 | 12.8156 | | 0.0 | 260.65 | 26000 | 0.4517 | 12.8058 | | 0.0 | 270.68 | 27000 | 0.4601 | 12.7921 | | 0.0 | 280.7 | 28000 | 0.4689 | 12.8029 | | 0.0 | 290.73 | 29000 | 0.4774 | 12.8039 | | 0.0 | 300.75 | 30000 | 0.4863 | 12.7960 | | 0.0 | 310.78 | 31000 | 0.4949 | 12.7912 | | 0.0 | 320.8 | 32000 | 0.5037 | 12.8107 | | 0.0 | 330.83 | 33000 | 0.5115 | 12.8087 | | 0.0 | 340.85 | 34000 | 0.5191 | 12.8293 | | 0.0 | 350.88 | 35000 | 0.5256 | 12.8918 | | 0.0 | 360.9 | 36000 | 0.5313 | 12.8810 | | 0.0 | 370.93 | 37000 | 0.5361 | 12.9045 | | 0.0 | 380.95 | 38000 | 0.5394 | 12.8996 | | 0.0 | 390.98 | 39000 | 0.5417 | 12.9123 | | 0.0 | 401.0 | 40000 | 0.5425 | 12.9123 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1