--- language: - eu license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: Whisper Tiny Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_16_1 eu type: mozilla-foundation/common_voice_16_1 config: eu split: test args: eu metrics: - name: Wer type: wer value: 19.094888228857275 --- # Whisper Tiny Basque This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_16_1 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.5146 - Wer: 19.0949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0426 | 10.0 | 1000 | 0.3451 | 23.2003 | | 0.0077 | 20.0 | 2000 | 0.4123 | 22.6053 | | 0.0013 | 30.0 | 3000 | 0.4288 | 21.1965 | | 0.0004 | 40.0 | 4000 | 0.4538 | 21.1926 | | 0.0003 | 50.0 | 5000 | 0.4757 | 21.1808 | | 0.0206 | 60.0 | 6000 | 0.4172 | 22.2751 | | 0.0003 | 70.0 | 7000 | 0.4374 | 19.5131 | | 0.0002 | 80.0 | 8000 | 0.4547 | 19.5091 | | 0.0001 | 90.0 | 9000 | 0.4697 | 19.5062 | | 0.0001 | 100.0 | 10000 | 0.4853 | 19.5199 | | 0.0001 | 110.0 | 11000 | 0.5009 | 19.5687 | | 0.0 | 120.0 | 12000 | 0.5175 | 19.6586 | | 0.0 | 130.0 | 13000 | 0.5348 | 19.7729 | | 0.0 | 140.0 | 14000 | 0.5531 | 19.7847 | | 0.0002 | 150.0 | 15000 | 0.4626 | 19.4730 | | 0.0001 | 160.0 | 16000 | 0.4813 | 19.2199 | | 0.0 | 170.0 | 17000 | 0.4932 | 19.1691 | | 0.0 | 180.0 | 18000 | 0.5041 | 19.1291 | | 0.0 | 190.0 | 19000 | 0.5146 | 19.0949 | | 0.0 | 200.0 | 20000 | 0.5254 | 19.1232 | | 0.0 | 210.0 | 21000 | 0.5369 | 19.1369 | | 0.0 | 220.0 | 22000 | 0.5484 | 19.1125 | | 0.0 | 230.0 | 23000 | 0.5606 | 19.1330 | | 0.0 | 240.0 | 24000 | 0.5732 | 19.1965 | | 0.0 | 250.0 | 25000 | 0.5864 | 19.2219 | | 0.0 | 260.0 | 26000 | 0.6003 | 19.3108 | | 0.0 | 270.0 | 27000 | 0.6140 | 19.3714 | | 0.0034 | 280.0 | 28000 | 0.5536 | 20.6630 | | 0.0 | 290.0 | 29000 | 0.5486 | 19.3391 | | 0.0 | 300.0 | 30000 | 0.5591 | 19.3059 | | 0.0 | 310.0 | 31000 | 0.5669 | 19.3137 | | 0.0 | 320.0 | 32000 | 0.5737 | 19.3225 | | 0.0 | 330.0 | 33000 | 0.5798 | 19.2883 | | 0.0 | 340.0 | 34000 | 0.5856 | 19.2668 | | 0.0 | 350.0 | 35000 | 0.5911 | 19.2346 | | 0.0 | 360.0 | 36000 | 0.5962 | 19.2287 | | 0.0 | 370.0 | 37000 | 0.6010 | 19.2326 | | 0.0 | 380.0 | 38000 | 0.6050 | 19.2287 | | 0.0 | 390.0 | 39000 | 0.6081 | 19.2375 | | 0.0 | 400.0 | 40000 | 0.6095 | 19.1965 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1