File size: 16,786 Bytes
01cd082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# gpt2-model-positional-encodings.py
import math
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
# Import necessary modules for different positional encodings
import numpy as np
import scipy.special
import scipy.signal
from packaging import version
# Check if scaled_dot_product_attention is available and supports flash attention
use_flash_attn = 'scaled_dot_product_attention' in dir(F) and version.parse(torch.__version__) >= version.parse('2.0.0')
if use_flash_attn:
print("Flash Attention v2 is available and will be used where possible.")
else:
print("Flash Attention v2 is not available. Using standard attention.")
class LayerNorm(nn.Module):
"""LayerNorm with optional bias."""
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
def get_positional_encoding(position, d_model, method, max_len=5000):
"""
Generate positional encodings based on the specified method.
"""
if method == 'default':
return None # Handled by nn.Embedding in the model
elif method == 'learned':
return None # Handled by nn.Embedding in the model
elif method == 'sinusoidal':
pe = torch.zeros(max_len, d_model)
position_enc = position.unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position_enc * div_term)
pe[:, 1::2] = torch.cos(position_enc * div_term)
return pe
elif method == 'exponential':
pe = torch.exp(-position.float() / max_len).unsqueeze(1).repeat(1, d_model)
return pe
elif method == 'polynomial_legendre':
pe = torch.zeros(max_len, d_model)
x = (position / max_len * 2) - 1 # Scale positions to [-1,1]
for i in range(d_model):
pe[:, i] = scipy.special.eval_legendre(i, x)
return pe
elif method == 'polynomial_chebyshev':
pe = torch.zeros(max_len, d_model)
x = (position / max_len * 2) - 1 # Scale positions to [-1,1]
for i in range(d_model):
pe[:, i] = scipy.special.eval_chebyt(i, x)
return pe
elif method == 'gaussian':
pe = torch.zeros(max_len, d_model)
positions = position.float()
means = torch.linspace(0, max_len, d_model)
std = max_len / d_model
for i in range(d_model):
pe[:, i] = torch.exp(- ((positions - means[i]) **2) / (2 * std **2))
return pe
elif method == 'random_fourier':
B = torch.randn(d_model, 1)
x = position.float() / max_len
x = x @ B.T * 2 * math.pi
pe = torch.cat([torch.sin(x), torch.cos(x)], dim=1)
return pe[:, :d_model]
elif method == 'wavelet':
pe = torch.zeros(max_len, d_model)
scales = torch.arange(1, d_model+1)
x = position.float()
for i in range(d_model):
wavelet = scipy.signal.ricker(points=max_len, a=scales[i])
pe[:, i] = torch.from_numpy(wavelet[position])
return pe
elif method == 'bessel':
pe = torch.zeros(max_len, d_model)
x = position.float()
for i in range(d_model):
pe[:, i] = scipy.special.jv(i, x)
return pe
elif method == 'alternative':
pe = torch.zeros(max_len, d_model)
position_enc = position.float()
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.tan(position_enc * div_term)
pe[:, 1::2] = torch.sin(position_enc * div_term + math.pi / 4)
return pe
elif method == 'none':
return torch.zeros(max_len, d_model)
else:
raise ValueError(f"Unknown positional encoding method: {method}")
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
assert config.n_embd % config.n_head == 0
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.head_dim = self.n_embd // self.n_head
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.resid_dropout = nn.Dropout(config.dropout)
# Implement attention-level positional encodings
if config.attention_type == 'rope':
self.rotary_dim = self.n_embd // self.n_head
if self.rotary_dim % 2 != 0:
self.rotary_dim -= self.rotary_dim % 2 # Ensure even dimension
inv_freq = 1.0 / (10000 ** (torch.arange(0, self.rotary_dim, 2).float() / self.rotary_dim))
self.register_buffer('inv_freq', inv_freq)
elif config.attention_type == 'alibi':
slopes = self.get_alibi_slopes(self.n_head)
self.register_buffer('alibi_slopes', slopes)
elif config.attention_type == 'relative':
num_rel_dis = 2 * config.block_size - 1
self.relative_positions = nn.Embedding(num_rel_dis, self.n_head)
# else: default attention (nothing extra to define)
def get_alibi_slopes(self, n_heads):
def get_slopes(n):
import math
def get_slopes_power_of_2(n):
start = 2 ** (-2 ** -(math.log2(n) - 3))
ratio = start
return [start * (ratio ** i) for i in range(n)]
if math.log2(n).is_integer():
return torch.Tensor(get_slopes_power_of_2(n))
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
slopes = get_slopes_power_of_2(closest_power_of_2)
extra_slopes = get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
return torch.Tensor(slopes + extra_slopes)
slopes = get_slopes(n_heads)
return slopes.view(n_heads, 1, 1)
def apply_rope(self, x):
# x: (B, n_head, T, head_dim)
seq_len = x.size(-2)
device = x.device
t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
emb = torch.cat((freqs.sin(), freqs.cos()), dim=-1) # (T, rotary_dim)
emb = emb[None, None, :, :] # (1, 1, T, rotary_dim)
x1 = x[..., :self.rotary_dim]
x2 = x[..., self.rotary_dim:]
x1_rot = x1 * emb + torch.flip(x1, dims=[-1]) * torch.flip(emb, dims=[-1])
x = torch.cat((x1_rot, x2), dim=-1)
return x
def forward(self, x, layer_past=None):
B, T, C = x.size()
qkv = self.c_attn(x).view(B, T, 3, self.n_head, self.head_dim)
qkv = qkv.permute(2, 0, 3, 1, 4) # (3, B, n_head, T, head_dim)
q, k, v = qkv[0], qkv[1], qkv[2] # Each is (B, n_head, T, head_dim)
if self.config.attention_type == 'rope':
q = self.apply_rope(q)
k = self.apply_rope(k)
# Decide whether to use Flash Attention based on training/evaluation mode and tracking flags
if use_flash_attn and self.config.attention_type in ['default', 'rope'] and not (self.config.track_attention_patterns and not self.training):
# Use PyTorch's scaled_dot_product_attention which leverages Flash Attention 2
y = F.scaled_dot_product_attention(
q, k, v, attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True
)
else:
# Standard attention mechanism
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if self.config.attention_type == 'alibi':
position_ids = torch.arange(T, device=x.device).unsqueeze(0).unsqueeze(0)
alibi = self.alibi_slopes.to(x.device) * position_ids # (n_head, 1, T)
attn_scores = attn_scores + alibi
elif self.config.attention_type == 'relative':
positions = torch.arange(-T+1, T, device=x.device)
rel_pos = self.relative_positions(positions + T -1)
attn_scores = attn_scores + rel_pos
# Apply causal mask
causal_mask = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T)
attn_scores = attn_scores.masked_fill(causal_mask == 0, float('-inf'))
attn_weights = F.softmax(attn_scores, dim=-1)
attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training)
# Collect attention patterns if required
if self.config.track_attention_patterns and not self.training:
self.attn_weights = attn_weights.detach().cpu()
y = torch.matmul(attn_weights, v)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
self.attn = CausalSelfAttention(config)
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.0
bias: bool = True
embedding_type: str = 'default' # Default uses learned positional embeddings
attention_type: str = 'default' # Default attention without any modifications
track_activations: bool = False
track_attention_patterns: bool = False
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict()
self.transformer['wte'] = nn.Embedding(config.vocab_size, config.n_embd)
if config.embedding_type in ['learned', 'default']:
self.transformer['wpe'] = nn.Embedding(config.block_size, config.n_embd)
self.pos_emb = None
elif config.embedding_type == 'none':
self.transformer['wpe'] = None
self.pos_emb = None
else:
self.transformer['wpe'] = None
position = torch.arange(0, config.block_size)
pe = get_positional_encoding(position, config.n_embd, config.embedding_type, config.block_size)
self.register_buffer('pos_emb', pe)
self.transformer['drop'] = nn.Dropout(config.dropout)
self.transformer['h'] = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
self.transformer['ln_f'] = LayerNorm(config.n_embd, bias=config.bias)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer['wte'].weight = self.lm_head.weight # Weight tying
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
# Initialize activations and attention patterns
self.activations = []
self.attention_patterns = []
print("Number of parameters: {:.2f}M".format(self.get_num_params() / 1e6))
def get_num_params(self, non_embedding=True):
n_params = sum(p.numel() for p in self.parameters())
if non_embedding and self.transformer['wpe'] is not None:
n_params -= self.transformer['wpe'].weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
tok_emb = self.transformer['wte'](idx) # token embeddings
if self.config.embedding_type in ['learned', 'default']:
pos_emb = self.transformer['wpe'](pos)
x = tok_emb + pos_emb
elif self.config.embedding_type == 'none':
x = tok_emb
else:
pos_emb = self.pos_emb[:t, :].to(device)
x = tok_emb + pos_emb.unsqueeze(0)
x = self.transformer['drop'](x)
# Reset activations and attention patterns if tracking
if self.config.track_activations and not self.training:
self.activations = []
if self.config.track_attention_patterns and not self.training:
self.attention_patterns = []
for block in self.transformer['h']:
x = block(x)
if self.config.track_activations and not self.training:
self.activations.append(x.detach().cpu())
if self.config.track_attention_patterns and not self.training:
if hasattr(block.attn, 'attn_weights'):
self.attention_patterns.append(block.attn.attn_weights)
x = self.transformer['ln_f'](x)
logits = self.lm_head(x)
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
loss = None
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# Start with all candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad}
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0},
]
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"Using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
"""Estimate model flops utilization (MFU)"""
N = self.get_num_params()
cfg = self.config
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd // cfg.n_head, cfg.block_size
flops_per_token = 6 * N + 12 * L * H * Q * T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
flops_achieved = flops_per_iter * (1.0 / dt)
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""Generate sequences of tokens from the model"""
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
|