File size: 16,786 Bytes
01cd082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# gpt2-model-positional-encodings.py

import math
import inspect
from dataclasses import dataclass

import torch
import torch.nn as nn
import torch.nn.functional as F

# Import necessary modules for different positional encodings
import numpy as np
import scipy.special
import scipy.signal

from packaging import version

# Check if scaled_dot_product_attention is available and supports flash attention
use_flash_attn = 'scaled_dot_product_attention' in dir(F) and version.parse(torch.__version__) >= version.parse('2.0.0')
if use_flash_attn:
    print("Flash Attention v2 is available and will be used where possible.")
else:
    print("Flash Attention v2 is not available. Using standard attention.")

class LayerNorm(nn.Module):
    """LayerNorm with optional bias."""
    def __init__(self, ndim, bias):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)

def get_positional_encoding(position, d_model, method, max_len=5000):
    """
    Generate positional encodings based on the specified method.
    """
    if method == 'default':
        return None  # Handled by nn.Embedding in the model
    elif method == 'learned':
        return None  # Handled by nn.Embedding in the model
    elif method == 'sinusoidal':
        pe = torch.zeros(max_len, d_model)
        position_enc = position.unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position_enc * div_term)
        pe[:, 1::2] = torch.cos(position_enc * div_term)
        return pe
    elif method == 'exponential':
        pe = torch.exp(-position.float() / max_len).unsqueeze(1).repeat(1, d_model)
        return pe
    elif method == 'polynomial_legendre':
        pe = torch.zeros(max_len, d_model)
        x = (position / max_len * 2) - 1  # Scale positions to [-1,1]
        for i in range(d_model):
            pe[:, i] = scipy.special.eval_legendre(i, x)
        return pe
    elif method == 'polynomial_chebyshev':
        pe = torch.zeros(max_len, d_model)
        x = (position / max_len * 2) - 1  # Scale positions to [-1,1]
        for i in range(d_model):
            pe[:, i] = scipy.special.eval_chebyt(i, x)
        return pe
    elif method == 'gaussian':
        pe = torch.zeros(max_len, d_model)
        positions = position.float()
        means = torch.linspace(0, max_len, d_model)
        std = max_len / d_model
        for i in range(d_model):
            pe[:, i] = torch.exp(- ((positions - means[i]) **2) / (2 * std **2))
        return pe
    elif method == 'random_fourier':
        B = torch.randn(d_model, 1)
        x = position.float() / max_len
        x = x @ B.T * 2 * math.pi
        pe = torch.cat([torch.sin(x), torch.cos(x)], dim=1)
        return pe[:, :d_model]
    elif method == 'wavelet':
        pe = torch.zeros(max_len, d_model)
        scales = torch.arange(1, d_model+1)
        x = position.float()
        for i in range(d_model):
            wavelet = scipy.signal.ricker(points=max_len, a=scales[i])
            pe[:, i] = torch.from_numpy(wavelet[position])
        return pe
    elif method == 'bessel':
        pe = torch.zeros(max_len, d_model)
        x = position.float()
        for i in range(d_model):
            pe[:, i] = scipy.special.jv(i, x)
        return pe
    elif method == 'alternative':
        pe = torch.zeros(max_len, d_model)
        position_enc = position.float()
        div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.tan(position_enc * div_term)
        pe[:, 1::2] = torch.sin(position_enc * div_term + math.pi / 4)
        return pe
    elif method == 'none':
        return torch.zeros(max_len, d_model)
    else:
        raise ValueError(f"Unknown positional encoding method: {method}")

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        assert config.n_embd % config.n_head == 0
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        self.head_dim = self.n_embd // self.n_head
        
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.resid_dropout = nn.Dropout(config.dropout)

        # Implement attention-level positional encodings
        if config.attention_type == 'rope':
            self.rotary_dim = self.n_embd // self.n_head
            if self.rotary_dim % 2 != 0:
                self.rotary_dim -= self.rotary_dim % 2  # Ensure even dimension
            inv_freq = 1.0 / (10000 ** (torch.arange(0, self.rotary_dim, 2).float() / self.rotary_dim))
            self.register_buffer('inv_freq', inv_freq)
        elif config.attention_type == 'alibi':
            slopes = self.get_alibi_slopes(self.n_head)
            self.register_buffer('alibi_slopes', slopes)
        elif config.attention_type == 'relative':
            num_rel_dis = 2 * config.block_size - 1
            self.relative_positions = nn.Embedding(num_rel_dis, self.n_head)
        # else: default attention (nothing extra to define)

    def get_alibi_slopes(self, n_heads):
        def get_slopes(n):
            import math
            def get_slopes_power_of_2(n):
                start = 2 ** (-2 ** -(math.log2(n) - 3))
                ratio = start
                return [start * (ratio ** i) for i in range(n)]
            if math.log2(n).is_integer():
                return torch.Tensor(get_slopes_power_of_2(n))
            else:
                closest_power_of_2 = 2 ** math.floor(math.log2(n))
                slopes = get_slopes_power_of_2(closest_power_of_2)
                extra_slopes = get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]
                return torch.Tensor(slopes + extra_slopes)
        slopes = get_slopes(n_heads)
        return slopes.view(n_heads, 1, 1)

    def apply_rope(self, x):
        # x: (B, n_head, T, head_dim)
        seq_len = x.size(-2)
        device = x.device
        t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        emb = torch.cat((freqs.sin(), freqs.cos()), dim=-1)  # (T, rotary_dim)
        emb = emb[None, None, :, :]  # (1, 1, T, rotary_dim)
        x1 = x[..., :self.rotary_dim]
        x2 = x[..., self.rotary_dim:]
        x1_rot = x1 * emb + torch.flip(x1, dims=[-1]) * torch.flip(emb, dims=[-1])
        x = torch.cat((x1_rot, x2), dim=-1)
        return x

    def forward(self, x, layer_past=None):
        B, T, C = x.size()
        qkv = self.c_attn(x).view(B, T, 3, self.n_head, self.head_dim)
        qkv = qkv.permute(2, 0, 3, 1, 4)  # (3, B, n_head, T, head_dim)
        q, k, v = qkv[0], qkv[1], qkv[2]  # Each is (B, n_head, T, head_dim)
        
        if self.config.attention_type == 'rope':
            q = self.apply_rope(q)
            k = self.apply_rope(k)

        # Decide whether to use Flash Attention based on training/evaluation mode and tracking flags
        if use_flash_attn and self.config.attention_type in ['default', 'rope'] and not (self.config.track_attention_patterns and not self.training):
            # Use PyTorch's scaled_dot_product_attention which leverages Flash Attention 2
            y = F.scaled_dot_product_attention(
                q, k, v, attn_mask=None,
                dropout_p=self.dropout if self.training else 0.0,
                is_causal=True
            )
        else:
            # Standard attention mechanism
            attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)

            if self.config.attention_type == 'alibi':
                position_ids = torch.arange(T, device=x.device).unsqueeze(0).unsqueeze(0)
                alibi = self.alibi_slopes.to(x.device) * position_ids  # (n_head, 1, T)
                attn_scores = attn_scores + alibi

            elif self.config.attention_type == 'relative':
                positions = torch.arange(-T+1, T, device=x.device)
                rel_pos = self.relative_positions(positions + T -1)
                attn_scores = attn_scores + rel_pos

            # Apply causal mask
            causal_mask = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T)
            attn_scores = attn_scores.masked_fill(causal_mask == 0, float('-inf'))

            attn_weights = F.softmax(attn_scores, dim=-1)
            attn_weights = F.dropout(attn_weights, p=self.dropout, training=self.training)

            # Collect attention patterns if required
            if self.config.track_attention_patterns and not self.training:
                self.attn_weights = attn_weights.detach().cpu()
            y = torch.matmul(attn_weights, v)
        
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu    = nn.GELU()
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)
    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

@dataclass
class GPTConfig:
    block_size: int = 1024
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768
    dropout: float = 0.0
    bias: bool = True
    embedding_type: str = 'default'  # Default uses learned positional embeddings
    attention_type: str = 'default'  # Default attention without any modifications
    track_activations: bool = False
    track_attention_patterns: bool = False

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config

        self.transformer = nn.ModuleDict()
        self.transformer['wte'] = nn.Embedding(config.vocab_size, config.n_embd)

        if config.embedding_type in ['learned', 'default']:
            self.transformer['wpe'] = nn.Embedding(config.block_size, config.n_embd)
            self.pos_emb = None
        elif config.embedding_type == 'none':
            self.transformer['wpe'] = None
            self.pos_emb = None
        else:
            self.transformer['wpe'] = None
            position = torch.arange(0, config.block_size)
            pe = get_positional_encoding(position, config.n_embd, config.embedding_type, config.block_size)
            self.register_buffer('pos_emb', pe)

        self.transformer['drop'] = nn.Dropout(config.dropout)
        self.transformer['h'] = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
        self.transformer['ln_f'] = LayerNorm(config.n_embd, bias=config.bias)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer['wte'].weight = self.lm_head.weight  # Weight tying

        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))

        # Initialize activations and attention patterns
        self.activations = []
        self.attention_patterns = []

        print("Number of parameters: {:.2f}M".format(self.get_num_params() / 1e6))

    def get_num_params(self, non_embedding=True):
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding and self.transformer['wpe'] is not None:
            n_params -= self.transformer['wpe'].weight.numel()
        return n_params

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device)  # shape (t)

        tok_emb = self.transformer['wte'](idx)  # token embeddings

        if self.config.embedding_type in ['learned', 'default']:
            pos_emb = self.transformer['wpe'](pos)
            x = tok_emb + pos_emb
        elif self.config.embedding_type == 'none':
            x = tok_emb
        else:
            pos_emb = self.pos_emb[:t, :].to(device)
            x = tok_emb + pos_emb.unsqueeze(0)

        x = self.transformer['drop'](x)

        # Reset activations and attention patterns if tracking
        if self.config.track_activations and not self.training:
            self.activations = []
        if self.config.track_attention_patterns and not self.training:
            self.attention_patterns = []

        for block in self.transformer['h']:
            x = block(x)
            if self.config.track_activations and not self.training:
                self.activations.append(x.detach().cpu())
            if self.config.track_attention_patterns and not self.training:
                if hasattr(block.attn, 'attn_weights'):
                    self.attention_patterns.append(block.attn.attn_weights)
        x = self.transformer['ln_f'](x)
        logits = self.lm_head(x)

        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            loss = None

        return logits, loss

    def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
        # Start with all candidate parameters
        param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad}
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0},
        ]
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == 'cuda'
        extra_args = dict(fused=True) if use_fused else dict()
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
        print(f"Using fused AdamW: {use_fused}")

        return optimizer

    def estimate_mfu(self, fwdbwd_per_iter, dt):
        """Estimate model flops utilization (MFU)"""
        N = self.get_num_params()
        cfg = self.config
        L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd // cfg.n_head, cfg.block_size
        flops_per_token = 6 * N + 12 * L * H * Q * T
        flops_per_fwdbwd = flops_per_token * T
        flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
        flops_achieved = flops_per_iter * (1.0 / dt)
        flops_promised = 312e12  # A100 GPU bfloat16 peak flops is 312 TFLOPS
        mfu = flops_achieved / flops_promised
        return mfu

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """Generate sequences of tokens from the model"""
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx