0-hero's picture
Add files using upload-large-folder tool
41c016f verified
raw
history blame
6.03 kB
define({
'name' :'pandas',
'sub-menu' : [
{
'name' : 'Setup',
'snippet' : [
'from __future__ import print_function, division',
'import pandas as pd',
],
},
{
'name' : 'Documentation',
'external-link' : 'http://pandas.pydata.org/pandas-docs/stable/',
},
'---',
{
'name' : 'Set options',
'snippet' : [
'pd.set_option(""display.height"", 10)',
'pd.set_option(""display.max_rows"", 20)',
'pd.set_option(""display.max_columns"", 500)',
'pd.set_option(""display.width"", 1000)',
],
},
{
'name' : 'To/from file',
'sub-menu' : [
{
'name' : 'Read from CSV',
'snippet' : [
'bp_data = pd.read_csv("path/to/file.csv", header=1, delim_whitespace=True)',
],
},
{
'name' : 'Write to CSV',
'snippet' : ['bp_data.to_csv("path/to/new_file.csv", sep=" ", header=False, index=False)',],
},
],
},
{
'name' : 'Deal with NaNs',
'sub-menu' : [
{
'name' : 'Filter out NaNs',
'snippet' : ['bp_data = bp_data.dropna()',],
},
{
'name' : 'Replace NaNs with number',
'snippet' : ['bp_data = bp_data.fillna(0.0)',],
},
],
},
{
'name' : 'Select rows',
'snippet' : ['bp_data[:5]',],
},
{
'name' : 'Select by column',
'snippet' : ['bp_column = bp_data[["Column name"]]',],
'sub-menu' : [
{
'name' : 'Select single column',
'snippet' : ['bp_column = bp_data[["Column name"]]',],
},
{
'name' : 'Select multiple columns',
'snippet' : [
'bp_columns = bp_data[["Column name 1", "Column name 2", "Column name 3"]]',],
},
],
},
{
'name' : 'Get numerical values from selection',
'sub-menu' : [
{
'name' : 'Select single column',
'snippet' : ['bp_num_value = bp_data[["Numerical column"]].values',],
},
{
'name' : 'Select multiple columns',
'snippet' : [
'bp_num_values = bp_data[["Numerical column 1", "Numerical column 2"]].values',],
},
{
'name' : 'Select rows',
'snippet' : ['bp_num_value = bp_data[:5].values',],
},
],
},
{
'name' : 'Iteration',
'snippet' : ['',],
},
{
'name' : 'Grouping',
'snippet' : ['',],
},
{
'name' : 'Sorting',
'snippet' : ['',],
},
{
'name' : 'Combining',
'sub-menu' : [
{
'name' : 'Split-apply-combine (sum)',
'snippet' : ['df['label_count'] = df.groupby('label', as_index=False)['label'].transform(lambda x: x.count())',],
},
{
'name' : 'Split-apply-combine (mean)',
'snippet' : ['df['label_mean'] = df.groupby('label', as_index=False)['label'].transform(lambda x: x.mean())',],
},
],
},
{
'name' : 'Basic stats',
'sub-menu' : [
{
'name' : 'Mean',
'snippet' : ['bp_mean = bp_data[["Numerical column 1"]].mean()',],
},
{
'name' : 'Mode',
'snippet' : ['bp_mode = bp_data[["Numerical column 1"]].mode()',],
},
{
'name' : 'Median',
'snippet' : ['bp_median = bp_data[["Numerical column 1"]].median()',],
},
{
'name' : 'Standard deviation (unbiased)',
'snippet' : ['bp_std = bp_data[["Numerical column 1"]].std()',],
},
{
'name' : 'Variance (unbiased)',
'snippet' : ['bp_var = bp_data[["Numerical column 1"]].var()',],
},
{
'name' : 'Skew (unbiased)',
'snippet' : ['bp_skew = bp_data[["Numerical column 1"]].skew()',],
},
{
'name' : 'Kurtosis (unbiased)',
'snippet' : ['bp_kurtosis = bp_data[["Numerical column 1"]].kurt()',],
},
{
'name' : 'Min',
'snippet' : ['bp_min = bp_data[["Numerical column 1"]].min()',],
},
{
'name' : 'Max',
'snippet' : ['bp_max = bp_data[["Numerical column 1"]].max()',],
},
{
'name' : 'Sum',
'snippet' : ['bp_sum = bp_data[["Numerical column 1"]].sum()',],
},
{
'name' : 'Product',
'snippet' : ['bp_product = bp_data[["Numerical column 1"]].product()',],
},
{
'name' : 'Number of elements',
'snippet' : ['bp_count = bp_data[["Numerical column 1"]].count()',],
},
],
},
],
});