Mia01ai commited on
Commit
f13c093
Β·
verified Β·
1 Parent(s): 8aca6a7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -3
README.md CHANGED
@@ -1,3 +1,84 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ <div align="center">
5
+
6
+ <picture>
7
+ <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
8
+ </picture>
9
+
10
+ </div>
11
+
12
+ <p align="center">
13
+ <a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
14
+ <a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
15
+ <a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
16
+ <a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a>
17
+ <br/>
18
+ <a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
19
+ <a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
20
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
21
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
22
+ </p>
23
+
24
+ # Intro
25
+
26
+ Yi-Coder series models are trained for coding tasks with two sizes available, 1.5B and 9B, supporting 52 major coding languages. Notably, the Yi-Coder-9B outperforms other models under 10 billion parameters such as CodeQwen1.5 7B and CodeGeex4 9B, and even achieves performance on par with DeepSeek-Coder 33B.
27
+
28
+ Yi-Coder excels in long-context understanding, handling up to 128K tokens for project-level code comprehension and generation. Despite its relatively small size, Yi-coder is versatile in tasks like programming, code editing, debugging, completion, and mathematical reasoning.
29
+
30
+ For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
31
+
32
+ <p align="left">
33
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/demo1.gif?raw=true" alt="demo1" width="500"/>
34
+ </p>
35
+
36
+ # Models
37
+
38
+ # Benchmarks
39
+
40
+ Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
41
+
42
+ <p align="left">
43
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/b1.jpg?raw=true" alt="b1" width="500"/>
44
+ </p>
45
+
46
+ # Quick Start
47
+
48
+ You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
49
+ ```python
50
+ from transformers import AutoTokenizer, AutoModelForCausalLM
51
+
52
+ device = "cuda" # the device to load the model onto
53
+ model_path = "01-ai/Yi-Coder-9B-Chat"
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
56
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
57
+
58
+ prompt = "Write a quick sort algorithm."
59
+ messages = [
60
+ {"role": "system", "content": "You are a helpful assistant."},
61
+ {"role": "user", "content": prompt}
62
+ ]
63
+ text = tokenizer.apply_chat_template(
64
+ messages,
65
+ tokenize=False,
66
+ add_generation_prompt=True
67
+ )
68
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
69
+
70
+ generated_ids = model.generate(
71
+ model_inputs.input_ids,
72
+ max_new_tokens=1024,
73
+ eos_token_id=tokenizer.eos_token_id
74
+ )
75
+ generated_ids = [
76
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
77
+ ]
78
+
79
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
80
+ print(response)
81
+ ```
82
+
83
+ For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
84
+