anonymitaet commited on
Commit
b613b5c
·
verified ·
1 Parent(s): b27fc59

Add initial readme

Browse files
Files changed (1) hide show
  1. README.md +247 -1
README.md CHANGED
@@ -2,4 +2,250 @@
2
  license: other
3
  license_name: yi-license
4
  license_link: LICENSE
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: other
3
  license_name: yi-license
4
  license_link: LICENSE
5
+ ---
6
+
7
+ <div align="center">
8
+
9
+ <picture>
10
+ <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_dark.svg" width="200px">
11
+ <source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="200px">
12
+ <img alt="specify theme context for images" src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="200px">
13
+ </picture>
14
+
15
+ </div>
16
+
17
+ <div align="center">
18
+ <h1 align="center">Yi Vision Language Model</h1>
19
+ </div>
20
+
21
+
22
+ <div align="center">
23
+ <h3 align="center">Better Bilingual Multimodal Model</h3>
24
+ </div>
25
+
26
+ <p align="center">
27
+ 🤗 <a href="https://huggingface.co/01-ai" target="_blank">Hugging Face</a> • 🤖 <a href="https://www.modelscope.cn/organization/01ai/" target="_blank">ModelScope</a> • ✡️ <a href="https://wisemodel.cn/organization/01.AI" target="_blank">WiseModel</a>
28
+ </p>
29
+
30
+ <p align="center">
31
+ 👩‍🚀 Ask questions or discuss ideas on <a href="https://github.com/01-ai/Yi/discussions" target="_blank"> GitHub </a>!
32
+ </p>
33
+
34
+ <p align="center">
35
+ 👋 Join us 💬 <a href="https://github.com/01-ai/Yi/issues/43#issuecomment-1827285245" target="_blank"> WeChat (Chinese) </a>!
36
+ </p>
37
+
38
+ <p align="center">
39
+ 📚 Grow at <a href="https://github.com/01-ai/Yi/blob/main/docs/learning_hub.md"> Yi Learning Hub </a>!
40
+ </p>
41
+
42
+ <hr>
43
+
44
+ <!-- DO NOT REMOVE ME -->
45
+
46
+ <details open>
47
+ <summary></b>📕 Table of Contents</b></summary>
48
+
49
+ - [What is Yi-VL?](#what-is-yi-vl)
50
+ - [Overview](#overview)
51
+ - [Models](#models)
52
+ - [Features](#features)
53
+ - [Architecture](#architecture)
54
+ - [Training](#training)
55
+ - [Limitations](#limitations)
56
+ - [Why Yi-VL?](#why-yi-vl)
57
+ - [Benchmarks](#benchmarks)
58
+ - [Showcases](#showcases)
59
+ - [How to use Yi-VL?](#how-to-use-yi-vl)
60
+ - [Quick start](#quick-start)
61
+ - [Hardware requirements](#hardware-requirements)
62
+ - [Misc.](#misc)
63
+ - [Acknowledgements and attributions](#acknowledgements-and-attributions)
64
+ - [List of used open-source projects](#list-of-used-open-source-projects)
65
+ - [License](#license)
66
+
67
+ </details>
68
+
69
+ <hr>
70
+
71
+ # What is Yi-VL?
72
+
73
+ ## Overview
74
+
75
+ - **Yi Visual Language (Yi-VL)** model is the open-source, multimodal version of the Yi **Large Language Model (LLM)** series, enabling content comprehension, recognition, and multi-round conversations about images.
76
+
77
+ - Yi-VL demonstrates exceptional performance, **ranking first** among all existing open-source models in the latest benchmarks including [MMMU](https://mmmu-benchmark.github.io/#leaderboard) in English and [CMMMU](https://mmmu-benchmark.github.io/#leaderboard) in Chinese (based on data available up to January 2024).
78
+
79
+ - Yi-VL-34B is the **first** open-source 34B vision language model worldwide.
80
+
81
+ ## Models
82
+
83
+ Yi-VL has released the following versions.
84
+
85
+ Model | Download
86
+ |---|---
87
+ Yi-VL-34B |• [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-VL-34B)
88
+ Yi-VL-6B | • [🤗 Hugging Face](https://huggingface.co/01-ai/Yi-VL-6B)
89
+
90
+ ## Features
91
+
92
+ Yi-VL offers the following features:
93
+
94
+ - Multi-round text-image conversations: Yi-VL can take both text and images as inputs and produce text outputs. Currently, it supports multi-round visual question answering with one image.
95
+
96
+ - Bilingual text support: Yi-VL supports conversations in both English and Chinese, including text recognition in images.
97
+
98
+ - Strong image comprehension: Yi-VL is adept at analyzing visuals, making it an efficient tool for tasks like extracting, organizing, and summarizing information from images.
99
+
100
+ - Fine-grained image resolution: Yi-VL supports image understanding at a higher resolution of 448&times;448.
101
+
102
+ ## Architecture
103
+
104
+ Yi-VL adopts the [LLaVA](https://github.com/haotian-liu/LLaVA) architecture, which is composed of three primary components:
105
+
106
+ - Vision Transformer (ViT): it's initialized with [CLIP ViT-H/14 model](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) and used for image encoding.
107
+
108
+ - Projection Module: it's designed to align image features with text feature space, consisting of a two-layer Multilayer Perceptron (MLP) with layer normalizations.
109
+
110
+ - Large Language Model (LLM): it's initialized with [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) or [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat), demonstrating exceptional proficiency in understanding and generating both English and Chinese.
111
+
112
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/EGVHSWG4kAcX01xDaoeXS.png)
113
+
114
+ ## Training
115
+
116
+ ### Training process
117
+
118
+ Yi-VL is trained to align visual information well to the semantic space of Yi LLM, which undergoes a comprehensive three-stage training process:
119
+
120
+ - Stage 1: The parameters of ViT and the projection module are trained using an image resolution of 224&times;224. The LLM weights are frozen. The training leverages an image caption dataset comprising 100 million image-text pairs from [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/). The primary objective is to enhance the ViT's knowledge acquisition within our specified architecture and to achieve better alignment between the ViT and the LLM.
121
+
122
+ - Stage 2: The image resolution of ViT is scaled up to 448&times;448, and the parameters of ViT and the projection module are trained. It aims to further boost the model's capability for discerning intricate visual details. The dataset used in this stage includes about 25 million image-text pairs, such as [LAION-400M](https://laion.ai/blog/laion-400-open-dataset/), [CLLaVA](https://huggingface.co/datasets/LinkSoul/Chinese-LLaVA-Vision-Instructions), [LLaVAR](https://llavar.github.io/), [Flickr](https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset), [VQAv2](https://paperswithcode.com/dataset/visual-question-answering-v2-0), [RefCOCO](https://github.com/lichengunc/refer/tree/master), [Visual7w](http://ai.stanford.edu/~yukez/visual7w/) and so on.
123
+
124
+ - Stage 3: The parameters of the entire model (that is, ViT, projection module, and LLM) are trained. The primary goal is to enhance the model's proficiency in multimodal chat interactions, thereby endowing it with the ability to seamlessly integrate and interpret visual and linguistic inputs. To this end, the training dataset encompasses a diverse range of sources, totalling approximately 1 million image-text pairs, including [GQA](https://cs.stanford.edu/people/dorarad/gqa/download.html), [VizWiz VQA](https://vizwiz.org/tasks-and-datasets/vqa/), [TextCaps](https://opendatalab.com/OpenDataLab/TextCaps), [OCR-VQA](https://ocr-vqa.github.io/), [Visual Genome](https://homes.cs.washington.edu/~ranjay/visualgenome/api.html), [LAION GPT4V](https://huggingface.co/datasets/laion/gpt4v-dataset) and so on. To ensure data balancing, we impose a cap on the maximum data contribution from any single source, restricting it to no more than 50,000 pairs.
125
+
126
+ Below are the parameters configured for each stage.
127
+
128
+ Stage | Global batch size | Learning rate | Gradient clip | Epochs
129
+ |---|---|---|---|---
130
+ Stage 1, 2 |4096|1e-4|0.5|1
131
+ Stage 3|256|2e-5|1.0|2
132
+
133
+ ### Training resource consumption
134
+
135
+ - The training consumes 128 NVIDIA A800 (80G) GPUs.
136
+
137
+ - The total training time amounted to approximately 10 days for Yi-VL-34B and 3 days for Yi-VL-6B.
138
+
139
+ ## Limitations
140
+
141
+ This is the initial release of the Yi-VL, which comes with some known limitations. It is recommended to carefully evaluate potential risks before adopting any models.
142
+
143
+ - Feature limitation
144
+
145
+ - Visual question answering is supported. Other features like text-to-3D and image-to-video are not yet supported.
146
+
147
+ - A single image rather than several images can be accepted as an input.
148
+
149
+ - Hallucination problem
150
+
151
+ - There is a certain possibility of generating content that does not exist in the image.
152
+
153
+ - In scenes containing multiple objects, some objects might be incorrectly identified or described with insufficient detail.
154
+
155
+ - Resolution issue
156
+
157
+ - Yi-VL is trained on images with a resolution of 448&times;448. During inference, inputs of any resolution are resized to 448&times;448. Low-resolution images may result in information loss, and more fine-grained images (above 448) do not bring in extra knowledge.
158
+
159
+ - Other limitations of the Yi LLM.
160
+
161
+ # Why Yi-VL?
162
+
163
+ ## Benchmarks
164
+
165
+ Yi-VL outperforms all existing open-source models in [MMMU](https://mmmu-benchmark.github.io/#leaderboard) and [CMMMU](https://mmmu-benchmark.github.io/#leaderboard), two advanced benchmarks that include massive multi-discipline multimodal questions.
166
+
167
+ - MMMU
168
+
169
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/kCmXuwLbLvequ93kjh3mg.png)
170
+
171
+ - CMMMU
172
+
173
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/6YuSakMCg3D2AozixdoZ0.png)
174
+
175
+ ## Showcases
176
+
177
+ Below are some representative examples of detailed description and visual question answering, showcasing the capabilities of Yi-VL.
178
+
179
+ - English
180
+
181
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/iD83s2d8X-x6Acodp-SeO.png)
182
+
183
+ - Chinese
184
+
185
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/l_tLzugFtHk1dkVsFJE7B.png)
186
+
187
+ # How to use Yi-VL?
188
+
189
+ ## Quick start
190
+
191
+ You can perform inference using the code from [LLaVA](https://github.com/haotian-liu/LLaVA). For detailed steps, see [simple startup for pretraining](https://github.com/haotian-liu/LLaVA/pull/966).
192
+
193
+ Notes:
194
+
195
+ - You need to modify the system prompt as follows.
196
+
197
+ ```
198
+ This is a chat between an inquisitive human and an AI assistant. Assume the role of the AI assistant. Read all the images carefully, and respond to the human's questions with informative, helpful, detailed and polite answers. 这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。仔细阅读所���的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。
199
+
200
+ ### Human: <image_placeholder>
201
+ What is it in the image?
202
+ ### Assistant:
203
+ ```
204
+
205
+ - You need to set the parameter `mm_vision_tower` in `config.json` to the local ViT path.
206
+
207
+ ## Hardware requirements
208
+
209
+ For model inference, the recommended GPU examples are:
210
+
211
+ - Yi-VL-6B: RTX 3090, RTX 4090, A10, A30
212
+
213
+ - Yi-VL-34B: 4 &times; RTX 4090, A800 (80 GB)
214
+
215
+ # Misc.
216
+
217
+ ## Acknowledgements and attributions
218
+
219
+ This project makes use of open-source software/components. We acknowledge and are grateful to these developers for their contributions to the open-source community.
220
+
221
+ ### List of used open-source projects
222
+
223
+ 1. LLaVA
224
+ - Authors: Haotian Liu, Chunyuan Li, Qingyang Wu, Yuheng Li, and Yong Jae Lee
225
+ - Source: https://github.com/haotian-liu/LLaVA
226
+ - License: Apache-2.0 license
227
+ - Description: The codebase is based on LLaVA code.
228
+
229
+ 2. OpenClip
230
+ - Authors: Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt
231
+ - Source: https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K
232
+ - License: MIT
233
+ - Description: The ViT is initialized using the weights of OpenClip.
234
+
235
+ **Notes**
236
+
237
+ - This attribution does not claim to cover all open-source components used. Please check individual components and their respective licenses for full details.
238
+
239
+ - The use of the open-source components is subject to the terms and conditions of the respective licenses.
240
+
241
+ We appreciate the open-source community for their invaluable contributions to the technology world.
242
+
243
+ ## License
244
+
245
+ Please refer to the [acknowledgments and attributions](#acknowledgments_and_attributions) as well as individual components, for the license of source code.
246
+
247
+ The Yi series models are fully open for academic research and free for commercial use, permissions of which are automatically granted upon application.
248
+
249
+ All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://huggingface.co/01-ai/Yi-VL-34B/blob/main/LICENSE).
250
+
251
+ For free commercial use, you only need to send an email to get official commercial permission.