Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2109.96 +/- 104.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a02fa27b34387f3075479634e0d07b704fa3d5c65704117c1a2bc7729b701c28
|
3 |
+
size 129247
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78f1812fda20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f1812fdab0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f1812fdb40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f1812fdbd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78f1812fdc60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78f1812fdcf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78f1812fdd80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f1812fde10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78f1812fdea0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f1812fdf30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f1812fdfc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78f1812fe050>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78f1814f2e40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1689453425920761017,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJbpjD/QE0S/83LUvjirzD/OcqG/FzpNP5qUVr/cg3e/x9KoP8k3hj/FrKQ9PZCKv8z4+j7zLIU/LMz9PlR6PTxNfqC/DPEbvzP/br6KNn4/5l6jPmnaHL6Ny3i/8/7ev7FyOD+japw+Hbs+P9BjKb8FQOw+XSBav69FEr8BCWs+N2GKvjt7BsD4kiO/c2CRPjXj0b5qZNy/99RVvq8ucr//M6s/c9KVPvNvLb8X2PO+UWPhvSHyDkDV0pg9hFakvqLLGL8auzU/kKAYvzLt/j+Gp7G/o2qcPmDNq7/QYym/A/gdv9Ik574LEgs98OrAP0a4078jjSLAcohUv2NcnT9U5re/l4A4PDK0RL/G6wi+vJzWPqijU7+D4jy+83cDQEW3sT9gsY29WSaIvrPK8b6TkQY+vjIPQL8Pgr71dX5Ahqexv6NqnD5gzau/0GMpv8lnQL7jelO/OK4Fvw5rUD9R/kq/WcNsP+LDQb/FVZw+ZAusv4dTmj72/YI+GLJVPxsjyj2YLwG/+jLrPu/fEj+1+xa/Cjq9v2U3E79NaAI/2EPQP5ddA71lhZk/Clsdv7FyOD+japw+Hbs+P9BjKb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/1cK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdQ4AvQAAAADuQfS/AAAAAG6cM70AAAAAlgz7PwAAAABv1si9AAAAACbD9j8AAAAAT2AGPgAAAAAJWPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIZ8htAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgExmTbsAAAAAMb7ZvwAAAAAJlQK9AAAAAJ+v2z8AAAAAmfiXPQAAAADeKPc/AAAAACVkUz0AAAAAdqDgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRHTjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBEt3C7AAAAAIGu/78AAAAAZ4ASPgAAAABRg+U/AAAAABcY/7sAAAAAsHvgPwAAAACbO288AAAAANKB6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA8dM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZELhvQAAAABJJvS/AAAAAJVGmjwAAAAARsPfPwAAAABmVAS9AAAAAFun/D8AAAAA1noDPQAAAAACHvO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKIoVXFtKqaMAWyUTegDjAF0lEdAqzP/bdrO7nV9lChoBkdAolL18VpKz2gHTegDaAhHQKs3I3qiXY11fZQoaAZHQKFO7QQ+UyJoB03oA2gIR0CrOV4oRZlndX2UKGgGR0CiLo8tPHktaAdN6ANoCEdAqzr0V8CxNnV9lChoBkdAor0Ja5f+j2gHTegDaAhHQKtAiMDwH7h1fZQoaAZHQKMLvU0elsRoB03oA2gIR0CrQ5/95yEMdX2UKGgGR0Cit4T4DcM3aAdN6ANoCEdAq0ZZdB0IT3V9lChoBkdAozkc6T4cm2gHTegDaAhHQKtIn5gw4851fZQoaAZHQKKjffJmukloB03oA2gIR0CrUQWbG3nZdX2UKGgGR0ChheStvGZNaAdN6ANoCEdAq1QoMnZ00XV9lChoBkdAobzp68g6l2gHTegDaAhHQKtWhmnO0LN1fZQoaAZHQKGOdgwXZXdoB03oA2gIR0CrWB6/h2nsdX2UKGgGR0CinUb3oLXuaAdN6ANoCEdAq12i/47A+XV9lChoBkdAofAU5MlC1WgHTegDaAhHQKtgxM0xdpt1fZQoaAZHQKMIDAfuCwtoB03oA2gIR0CrYxbrs0HhdX2UKGgGR0CikKLGrCFcaAdN6ANoCEdAq2SdxIatLnV9lChoBkdAoiUy4UeuFGgHTegDaAhHQKts/1yNn5B1fZQoaAZHQKIHFl+3H7xoB03oA2gIR0CrcVd9Dx9YdX2UKGgGR0Chs30elsP8aAdN6ANoCEdAq3OoL5RCQnV9lChoBkdAodRzINmUW2gHTegDaAhHQKt1N2jfvWp1fZQoaAZHQJ/a9GRV6u5oB03oA2gIR0CrevFdszl+dX2UKGgGR0Cg2Xw0XP7faAdN6ANoCEdAq34PhGYrrnV9lChoBkdAnqr5gb6xgWgHTegDaAhHQKuAZyS3b211fZQoaAZHQKBuuAFxGUhoB03oA2gIR0CrggqN6w+udX2UKGgGR0CcNvO5rgwXaAdN6ANoCEdAq4kzB0p3HXV9lChoBkdAnOG++AVfu2gHTegDaAhHQKuOO+nIhhZ1fZQoaAZHQJriYnssxwhoB03oA2gIR0CrkRmXokiVdX2UKGgGR0Ca1sdUKiPAaAdN6ANoCEdAq5K40ZWJanV9lChoBkdAl+quKKpDNWgHTegDaAhHQKuYZjIaLn91fZQoaAZHQJwH3NbC79RoB03oA2gIR0Crm6PFvQ4TdX2UKGgGR0Cc7GZpBX0YaAdN6ANoCEdAq5396HCXQnV9lChoBkdAnvGHanJkoWgHTegDaAhHQKufnUXpGF11fZQoaAZHQJ85w7QswtdoB03oA2gIR0CrpdSqEOAidX2UKGgGR0Ce2W8ZUDMeaAdN6ANoCEdAq6qj3225QXV9lChoBkdAnmHHp0OmSGgHTegDaAhHQKuuSt1ZDAt1fZQoaAZHQJ98odcSoOxoB03oA2gIR0CrsBNHxz7udX2UKGgGR0Cg/vSSNfgKaAdN6ANoCEdAq7WM6T4cm3V9lChoBkdAoLO8rXlKb2gHTegDaAhHQKu4sMa0hNd1fZQoaAZHQKBWlYdQwbloB03oA2gIR0CruvOSOinHdX2UKGgGR0ChOBuPvKEGaAdN6ANoCEdAq7x/AXVLBnV9lChoBkdAoPWOPgeijGgHTegDaAhHQKvCDqwhW5p1fZQoaAZHQJ8hqqsEJSloB03oA2gIR0Crxkl/QSi/dX2UKGgGR0CgBv/c32mIaAdN6ANoCEdAq8na0hNdq3V9lChoBkdAoDYOicoYvWgHTegDaAhHQKvMVtSAH3V1fZQoaAZHQJ5IAqJ/G2loB03oA2gIR0Cr0nQxN7BwdX2UKGgGR0CfmrX7+DODaAdN6ANoCEdAq9WWwLVnVXV9lChoBkdAoLzlk8Rtg2gHTegDaAhHQKvX1E1EVnF1fZQoaAZHQJ+QdKCg9NhoB03oA2gIR0Cr2VeyquKXdX2UKGgGR0Cd0fRG+bmVaAdN6ANoCEdAq97Q2hqTKXV9lChoBkdAn+lb3bmEG2gHTegDaAhHQKvh7HFxXGR1fZQoaAZHQJ52bjebd8BoB03oA2gIR0Cr5SLt/nW8dX2UKGgGR0CgquKi48U3aAdN6ANoCEdAq+d9JQLuyHV9lChoBkdAoXdwq/dqL2gHTegDaAhHQKvvPogV45d1fZQoaAZHQKCG3StNi6RoB03oA2gIR0Cr8kutOmBOdX2UKGgGR0Cgh36WHDaXaAdN6ANoCEdAq/SYxcmjTXV9lChoBkdAoIcJjFyaNWgHTegDaAhHQKv2LKU3XI51fZQoaAZHQKB6QBClabFoB03oA2gIR0Cr+6eI2wV1dX2UKGgGR0CfxvsDnvDxaAdN6ANoCEdAq/6/i97F9HV9lChoBkdAn9oWN3np0WgHTegDaAhHQKwA+21lXil1fZQoaAZHQJ8lAyN4qw1oB03oA2gIR0CsAusS00FbdX2UKGgGR0Cck2BWgezVaAdN6ANoCEdArAsud3B55nV9lChoBkdAnYqeEqUeMmgHTegDaAhHQKwO6owVTJh1fZQoaAZHQJzL1vvSc9ZoB03oA2gIR0CsETFMyrPudX2UKGgGR0CdKnM72criaAdN6ANoCEdArBK98CxNZnV9lChoBkdAnflRVhkRSWgHTegDaAhHQKwYLFUhmoR1fZQoaAZHQJ02BwOvt+loB03oA2gIR0CsG3MZYPoWdX2UKGgGR0CeJNB3Roh7aAdN6ANoCEdArB229zwMIHV9lChoBkdAncnfr8iwCGgHTegDaAhHQKwfRwuM+/x1fZQoaAZHQJ8AOR2bG3poB03oA2gIR0CsJodZq20BdX2UKGgGR0CgL6lP8AJcaAdN6ANoCEdArCtlCeEqUnV9lChoBkdAoDiiKk2xZGgHTegDaAhHQKwt+vg3tKJ1fZQoaAZHQKCFlMewLVpoB03oA2gIR0CsL4sJ6Y3OdX2UKGgGR0ChE4ytvGZNaAdN6ANoCEdArDURZ0Syt3V9lChoBkdAoUu9PpIMB2gHTegDaAhHQKw4IivgWJt1fZQoaAZHQKDiBTQ3PzFoB03oA2gIR0CsOnRh2GIsdX2UKGgGR0Cg7yCvHLidaAdN6ANoCEdArDwQOhCdBnV9lChoBkdAoWvVKZlWfmgHTegDaAhHQKxCRR1oxpN1fZQoaAZHQKF0R4TsY2toB03oA2gIR0CsRwkw35vcdX2UKGgGR0Ce3WFPBSDRaAdN6ANoCEdArEqlWsA/93V9lChoBkdAoT2j5ylvZWgHTegDaAhHQKxMqyeqaPV1fZQoaAZHQKGgagyM1j1oB03oA2gIR0CsUjbhegL7dX2UKGgGR0Ch7pclPacqaAdN6ANoCEdArFVR99c8knV9lChoBkdAoXeFAVwgkmgHTegDaAhHQKxXmrjHXEt1fZQoaAZHQKIaK8274BVoB03oA2gIR0CsWSYMOPNndX2UKGgGR0ChcAgNPP9laAdN6ANoCEdArF69N1yNoHV9lChoBkdAoMG/UKArhGgHTegDaAhHQKxiwy2QXAN1fZQoaAZHQKAqvBF/hEVoB03oA2gIR0CsZlh9Tgl4dX2UKGgGR0Chfs0cOskqaAdN6ANoCEdArGjI7zTWoXV9lChoBkdAoX2jBGhEjWgHTegDaAhHQKxvJQrtmcx1fZQoaAZHQKF9OsHSncdoB03oA2gIR0Cscki+UQkHdX2UKGgGR0ChAMdIoVmBaAdN6ANoCEdArHSnHDJlrnV9lChoBkdAoXYdyJbdJ2gHTegDaAhHQKx2H79AHFB1fZQoaAZHQKEYv+EytV9oB03oA2gIR0Cse41OsT37dX2UKGgGR0CfqH62v0ROaAdN6ANoCEdArH6qprDZUXV9lChoBkdAoVTRyhi9ZmgHTegDaAhHQKyBrdM0xdp1fZQoaAZHQKFulPX05ENoB03oA2gIR0Csg/JdSl3ydX2UKGgGR0CiT6vgm7aqaAdN6ANoCEdArIvpz/6wdXV9lChoBkdAof1MfPomomgHTegDaAhHQKyPDksjFAF1fZQoaAZHQKG7CDU3GXJoB03oA2gIR0CskU7iADq4dX2UKGgGR0CiZZ938n/laAdN6ANoCEdArJLZXKbKBHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:171b6b4a66622dd8c2dd9bc1e3e350edec82f5955d4a5a0ec7132092f7879843
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dbf10f48d240d16704b8894346df9787768b65b97d8938e4e9de05310afcb88
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f1812fda20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f1812fdab0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f1812fdb40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f1812fdbd0>", "_build": "<function ActorCriticPolicy._build at 0x78f1812fdc60>", "forward": "<function ActorCriticPolicy.forward at 0x78f1812fdcf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f1812fdd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f1812fde10>", "_predict": "<function ActorCriticPolicy._predict at 0x78f1812fdea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f1812fdf30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f1812fdfc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f1812fe050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f1814f2e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689453425920761017, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJbpjD/QE0S/83LUvjirzD/OcqG/FzpNP5qUVr/cg3e/x9KoP8k3hj/FrKQ9PZCKv8z4+j7zLIU/LMz9PlR6PTxNfqC/DPEbvzP/br6KNn4/5l6jPmnaHL6Ny3i/8/7ev7FyOD+japw+Hbs+P9BjKb8FQOw+XSBav69FEr8BCWs+N2GKvjt7BsD4kiO/c2CRPjXj0b5qZNy/99RVvq8ucr//M6s/c9KVPvNvLb8X2PO+UWPhvSHyDkDV0pg9hFakvqLLGL8auzU/kKAYvzLt/j+Gp7G/o2qcPmDNq7/QYym/A/gdv9Ik574LEgs98OrAP0a4078jjSLAcohUv2NcnT9U5re/l4A4PDK0RL/G6wi+vJzWPqijU7+D4jy+83cDQEW3sT9gsY29WSaIvrPK8b6TkQY+vjIPQL8Pgr71dX5Ahqexv6NqnD5gzau/0GMpv8lnQL7jelO/OK4Fvw5rUD9R/kq/WcNsP+LDQb/FVZw+ZAusv4dTmj72/YI+GLJVPxsjyj2YLwG/+jLrPu/fEj+1+xa/Cjq9v2U3E79NaAI/2EPQP5ddA71lhZk/Clsdv7FyOD+japw+Hbs+P9BjKb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB/1cK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdQ4AvQAAAADuQfS/AAAAAG6cM70AAAAAlgz7PwAAAABv1si9AAAAACbD9j8AAAAAT2AGPgAAAAAJWPW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIZ8htAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgExmTbsAAAAAMb7ZvwAAAAAJlQK9AAAAAJ+v2z8AAAAAmfiXPQAAAADeKPc/AAAAACVkUz0AAAAAdqDgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFRHTjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBEt3C7AAAAAIGu/78AAAAAZ4ASPgAAAABRg+U/AAAAABcY/7sAAAAAsHvgPwAAAACbO288AAAAANKB6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA8dM1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZELhvQAAAABJJvS/AAAAAJVGmjwAAAAARsPfPwAAAABmVAS9AAAAAFun/D8AAAAA1noDPQAAAAACHvO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKIoVXFtKqaMAWyUTegDjAF0lEdAqzP/bdrO7nV9lChoBkdAolL18VpKz2gHTegDaAhHQKs3I3qiXY11fZQoaAZHQKFO7QQ+UyJoB03oA2gIR0CrOV4oRZlndX2UKGgGR0CiLo8tPHktaAdN6ANoCEdAqzr0V8CxNnV9lChoBkdAor0Ja5f+j2gHTegDaAhHQKtAiMDwH7h1fZQoaAZHQKMLvU0elsRoB03oA2gIR0CrQ5/95yEMdX2UKGgGR0Cit4T4DcM3aAdN6ANoCEdAq0ZZdB0IT3V9lChoBkdAozkc6T4cm2gHTegDaAhHQKtIn5gw4851fZQoaAZHQKKjffJmukloB03oA2gIR0CrUQWbG3nZdX2UKGgGR0ChheStvGZNaAdN6ANoCEdAq1QoMnZ00XV9lChoBkdAobzp68g6l2gHTegDaAhHQKtWhmnO0LN1fZQoaAZHQKGOdgwXZXdoB03oA2gIR0CrWB6/h2nsdX2UKGgGR0CinUb3oLXuaAdN6ANoCEdAq12i/47A+XV9lChoBkdAofAU5MlC1WgHTegDaAhHQKtgxM0xdpt1fZQoaAZHQKMIDAfuCwtoB03oA2gIR0CrYxbrs0HhdX2UKGgGR0CikKLGrCFcaAdN6ANoCEdAq2SdxIatLnV9lChoBkdAoiUy4UeuFGgHTegDaAhHQKts/1yNn5B1fZQoaAZHQKIHFl+3H7xoB03oA2gIR0CrcVd9Dx9YdX2UKGgGR0Chs30elsP8aAdN6ANoCEdAq3OoL5RCQnV9lChoBkdAodRzINmUW2gHTegDaAhHQKt1N2jfvWp1fZQoaAZHQJ/a9GRV6u5oB03oA2gIR0CrevFdszl+dX2UKGgGR0Cg2Xw0XP7faAdN6ANoCEdAq34PhGYrrnV9lChoBkdAnqr5gb6xgWgHTegDaAhHQKuAZyS3b211fZQoaAZHQKBuuAFxGUhoB03oA2gIR0CrggqN6w+udX2UKGgGR0CcNvO5rgwXaAdN6ANoCEdAq4kzB0p3HXV9lChoBkdAnOG++AVfu2gHTegDaAhHQKuOO+nIhhZ1fZQoaAZHQJriYnssxwhoB03oA2gIR0CrkRmXokiVdX2UKGgGR0Ca1sdUKiPAaAdN6ANoCEdAq5K40ZWJanV9lChoBkdAl+quKKpDNWgHTegDaAhHQKuYZjIaLn91fZQoaAZHQJwH3NbC79RoB03oA2gIR0Crm6PFvQ4TdX2UKGgGR0Cc7GZpBX0YaAdN6ANoCEdAq5396HCXQnV9lChoBkdAnvGHanJkoWgHTegDaAhHQKufnUXpGF11fZQoaAZHQJ85w7QswtdoB03oA2gIR0CrpdSqEOAidX2UKGgGR0Ce2W8ZUDMeaAdN6ANoCEdAq6qj3225QXV9lChoBkdAnmHHp0OmSGgHTegDaAhHQKuuSt1ZDAt1fZQoaAZHQJ98odcSoOxoB03oA2gIR0CrsBNHxz7udX2UKGgGR0Cg/vSSNfgKaAdN6ANoCEdAq7WM6T4cm3V9lChoBkdAoLO8rXlKb2gHTegDaAhHQKu4sMa0hNd1fZQoaAZHQKBWlYdQwbloB03oA2gIR0CruvOSOinHdX2UKGgGR0ChOBuPvKEGaAdN6ANoCEdAq7x/AXVLBnV9lChoBkdAoPWOPgeijGgHTegDaAhHQKvCDqwhW5p1fZQoaAZHQJ8hqqsEJSloB03oA2gIR0Crxkl/QSi/dX2UKGgGR0CgBv/c32mIaAdN6ANoCEdAq8na0hNdq3V9lChoBkdAoDYOicoYvWgHTegDaAhHQKvMVtSAH3V1fZQoaAZHQJ5IAqJ/G2loB03oA2gIR0Cr0nQxN7BwdX2UKGgGR0CfmrX7+DODaAdN6ANoCEdAq9WWwLVnVXV9lChoBkdAoLzlk8Rtg2gHTegDaAhHQKvX1E1EVnF1fZQoaAZHQJ+QdKCg9NhoB03oA2gIR0Cr2VeyquKXdX2UKGgGR0Cd0fRG+bmVaAdN6ANoCEdAq97Q2hqTKXV9lChoBkdAn+lb3bmEG2gHTegDaAhHQKvh7HFxXGR1fZQoaAZHQJ52bjebd8BoB03oA2gIR0Cr5SLt/nW8dX2UKGgGR0CgquKi48U3aAdN6ANoCEdAq+d9JQLuyHV9lChoBkdAoXdwq/dqL2gHTegDaAhHQKvvPogV45d1fZQoaAZHQKCG3StNi6RoB03oA2gIR0Cr8kutOmBOdX2UKGgGR0Cgh36WHDaXaAdN6ANoCEdAq/SYxcmjTXV9lChoBkdAoIcJjFyaNWgHTegDaAhHQKv2LKU3XI51fZQoaAZHQKB6QBClabFoB03oA2gIR0Cr+6eI2wV1dX2UKGgGR0CfxvsDnvDxaAdN6ANoCEdAq/6/i97F9HV9lChoBkdAn9oWN3np0WgHTegDaAhHQKwA+21lXil1fZQoaAZHQJ8lAyN4qw1oB03oA2gIR0CsAusS00FbdX2UKGgGR0Cck2BWgezVaAdN6ANoCEdArAsud3B55nV9lChoBkdAnYqeEqUeMmgHTegDaAhHQKwO6owVTJh1fZQoaAZHQJzL1vvSc9ZoB03oA2gIR0CsETFMyrPudX2UKGgGR0CdKnM72criaAdN6ANoCEdArBK98CxNZnV9lChoBkdAnflRVhkRSWgHTegDaAhHQKwYLFUhmoR1fZQoaAZHQJ02BwOvt+loB03oA2gIR0CsG3MZYPoWdX2UKGgGR0CeJNB3Roh7aAdN6ANoCEdArB229zwMIHV9lChoBkdAncnfr8iwCGgHTegDaAhHQKwfRwuM+/x1fZQoaAZHQJ8AOR2bG3poB03oA2gIR0CsJodZq20BdX2UKGgGR0CgL6lP8AJcaAdN6ANoCEdArCtlCeEqUnV9lChoBkdAoDiiKk2xZGgHTegDaAhHQKwt+vg3tKJ1fZQoaAZHQKCFlMewLVpoB03oA2gIR0CsL4sJ6Y3OdX2UKGgGR0ChE4ytvGZNaAdN6ANoCEdArDURZ0Syt3V9lChoBkdAoUu9PpIMB2gHTegDaAhHQKw4IivgWJt1fZQoaAZHQKDiBTQ3PzFoB03oA2gIR0CsOnRh2GIsdX2UKGgGR0Cg7yCvHLidaAdN6ANoCEdArDwQOhCdBnV9lChoBkdAoWvVKZlWfmgHTegDaAhHQKxCRR1oxpN1fZQoaAZHQKF0R4TsY2toB03oA2gIR0CsRwkw35vcdX2UKGgGR0Ce3WFPBSDRaAdN6ANoCEdArEqlWsA/93V9lChoBkdAoT2j5ylvZWgHTegDaAhHQKxMqyeqaPV1fZQoaAZHQKGgagyM1j1oB03oA2gIR0CsUjbhegL7dX2UKGgGR0Ch7pclPacqaAdN6ANoCEdArFVR99c8knV9lChoBkdAoXeFAVwgkmgHTegDaAhHQKxXmrjHXEt1fZQoaAZHQKIaK8274BVoB03oA2gIR0CsWSYMOPNndX2UKGgGR0ChcAgNPP9laAdN6ANoCEdArF69N1yNoHV9lChoBkdAoMG/UKArhGgHTegDaAhHQKxiwy2QXAN1fZQoaAZHQKAqvBF/hEVoB03oA2gIR0CsZlh9Tgl4dX2UKGgGR0Chfs0cOskqaAdN6ANoCEdArGjI7zTWoXV9lChoBkdAoX2jBGhEjWgHTegDaAhHQKxvJQrtmcx1fZQoaAZHQKF9OsHSncdoB03oA2gIR0Cscki+UQkHdX2UKGgGR0ChAMdIoVmBaAdN6ANoCEdArHSnHDJlrnV9lChoBkdAoXYdyJbdJ2gHTegDaAhHQKx2H79AHFB1fZQoaAZHQKEYv+EytV9oB03oA2gIR0Cse41OsT37dX2UKGgGR0CfqH62v0ROaAdN6ANoCEdArH6qprDZUXV9lChoBkdAoVTRyhi9ZmgHTegDaAhHQKyBrdM0xdp1fZQoaAZHQKFulPX05ENoB03oA2gIR0Csg/JdSl3ydX2UKGgGR0CiT6vgm7aqaAdN6ANoCEdArIvpz/6wdXV9lChoBkdAof1MfPomomgHTegDaAhHQKyPDksjFAF1fZQoaAZHQKG7CDU3GXJoB03oA2gIR0CskU7iADq4dX2UKGgGR0CiZZ938n/laAdN6ANoCEdArJLZXKbKBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c0be16a103943968f03d64a9ec229128e00398f248c2d63ec83bfd5d736254d
|
3 |
+
size 1260402
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2109.95710124356, "std_reward": 104.29677903815329, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-15T21:38:55.996962"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c2c6fd64c5aa65414f48b9ccd3aed98c5d2d8f480e63544be841becda6f5364
|
3 |
+
size 2176
|