File size: 1,444 Bytes
2b8c66d
 
 
 
 
 
 
 
 
 
 
f3db973
 
2b8c66d
 
f3db973
2b8c66d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3db973
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: creativeml-openrail-m
library_name: diffusers
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
base_model: stabilityai/stable-diffusion-xl-base-1.0
datasets:
- 0x7o/RussianVibe-data
---

# RussianVibe XL v2.0

These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the 0x7o/RussianVibe-data dataset. You can find some example images in the following. 

![img_0](./image_0.png)
![img_1](./image_1.png)
![img_2](./image_2.png)
![img_3](./image_3.png)


LoRA for the text encoder was enabled: False.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.


## Intended uses & limitations

#### How to use

```python
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
import torch
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipe.load_lora_weights("0x7o/RussianVibe-XL-v2.0")
pipe.to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
prompt = "The sun is setting through a window, casting a warm glow on the cityscape beyond. The sun casts a warm orange glow on the buildings in the distance, creating a beautiful and serene atmosphere."
image = pipe(prompt, num_inference_steps=30, guidance_scale=5.0, negative_prompt="bad quality, painting, art").images[0]
image.save("output.png")
```