File size: 6,482 Bytes
e75d5c7
9e94911
 
 
 
 
dfa6d19
 
 
 
9e94911
 
 
 
 
 
0abccce
e75d5c7
 
d3e8b89
 
 
 
 
 
 
 
215033b
6cb714c
215033b
e75d5c7
9e94911
 
e75d5c7
 
 
 
 
215033b
9e94911
e75d5c7
d3e8b89
 
 
 
ef229cc
 
 
 
 
d3e8b89
 
9e94911
e75d5c7
d3e8b89
6cb714c
 
 
e75d5c7
6cb714c
e75d5c7
6cb714c
215033b
6cb714c
 
e75d5c7
d3e8b89
 
 
 
9e94911
e75d5c7
6cb714c
e75d5c7
9e94911
 
215033b
e75d5c7
6cb714c
e75d5c7
6cb714c
e75d5c7
d3e8b89
6cb714c
e75d5c7
6cb714c
 
 
 
e75d5c7
215033b
6cb714c
e75d5c7
6cb714c
215033b
6cb714c
 
 
 
e75d5c7
6cb714c
e75d5c7
6cb714c
 
e75d5c7
d3e8b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb714c
e75d5c7
215033b
e75d5c7
215033b
 
6cb714c
215033b
 
 
6cb714c
 
215033b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb714c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
license: cc-by-4.0
datasets:
- speechcolab/gigaspeech
- parler-tts/mls_eng_10k
- reach-vb/jenny_tts_dataset
- MikhailT/hifi-tts
- ylacombe/expresso
- keithito/lj_speech
- collabora/ai4bharat-shrutilipi
language:
- en
- hi
base_model:
- openai-community/gpt2
pipeline_tag: text-to-speech
library_name: transformers
---

| Platform | Link |
|----------|------|
| 🌎 Live Demo | [indrivoice.ai](https://indrivoice.ai/) |
| 𝕏 Twitter | [@11mlabs](https://x.com/11mlabs) |
| 🐱 GitHub | [Indri Repository](https://github.com/cmeraki/indri) |
| 🤗 Hugging Face (Collection) | [Indri collection](https://huggingface.co/collections/11mlabs/indri-673dd4210b4369037c736bfe) |
| 📝 Release Blog | [Release Blog](#) |

# Model Card for indri-0.1-124m-tts

Indri is a series of audio models that can do TTS, ASR, and audio continuation. This is the smallest model (124M) in our series and supports TTS tasks in 2 languages:

1. English
2. Hindi

## Model Details

### Model Description

`indri-0.1-124m-tts` is a novel, ultra-small, and lightweight TTS model based on the transformer architecture.
It models audio as tokens and can generate high-quality audio with consistent style cloning of the speaker.

### Samples

| Text | Sample |
| --- | --- |
|अतीत गौरवशाली, वर्तमान आशावादी, भविष्य उज्जवल| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/417f5f1b-d641-4393-b922-9da9644dcd1b.wav" title="Title"></audio> |
|भाइयों और बहनों, ये हमारा सौभाग्य है कि हम सब मिलकर इस महान देश को नई ऊंचाइयों पर ले जाने का सपना देख रहे हैं।| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/6e0a4879-0379-4166-a52c-03220a3f2922.wav" title="Title"></audio> |
|Hello दोस्तों, future of speech technology mein अपका स्वागत है | <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/5848b722-efe3-4e1f-a15e-5e7d431cd475.wav" title="Title"></audio> |
|Artificial Intelligence's collaborative hub: Transforming Machine Learning together| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/12e5a00e-834b-4c3c-a8b8-7f545ba7088c.wav" title="Title"></audio> |
|Intelligent machines processing data at lightning-fast electronic speeds| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/e21efa09-e179-42b7-982a-b686038a8f60.wav" title="Title"></audio> |


### Key features

1. Extremely small, based on GPT-2 small architecture. The methodology can be extended to any autoregressive transformer-based architecture.
2. Supports voice cloning with small prompts (<5s).
3. Code mixing text input in 2 languages - English and Hindi.
4. Ultra-fast. Can generate 5 seconds of audio per second on Amphere generation NVIDIA GPUs, and up to 10 seconds of audio per second on Ada generation NVIDIA GPUs.

### Details

1. Model Type: GPT-2 based language model
2. Size: 124M parameters
3. Language Support: English, Hindi
4. License: CC BY 4.0

### Speed



## Technical details

Here's a brief of how the model works:

1. Converts input text into tokens
2. Runs autoregressive decoding on GPT-2 based transformer model and generates audio tokens
3. Decodes audio tokens (using [Kyutai/mimi](https://huggingface.co/kyutai/mimi)) to audio

Please read our blog [here](#TODO) for more technical details on how it was built.

## How to Get Started with the Model

### 🤗 pipelines 
Use the code below to get started with the model. Pipelines are the best way to get started with the model.

```python
import torch
import torchaudio
from transformers import pipeline

model_id = '11mlabs/indri-0.1-124m-tts'
task = 'indri-tts'

pipe = pipeline(
    task,
    model=model_id,
    device=torch.device('cuda:0'), # Update this based on your hardware,
    trust_remote_code=True
)

output = pipe(['Hi, my name is Indri and I like to talk.'])

torchaudio.save('output.wav', output[0]['audio'][0], sample_rate=24000)
```

### Self hosted service

```bash
git clone https://github.com/cmeraki/indri.git
cd indri
pip install -r requirements.txt

# Install ffmpeg (for Mac/Windows, refer here: https://www.ffmpeg.org/download.html)
sudo apt update -y
sudo apt upgrade -y
sudo apt install ffmpeg -y

python -m inference --model_path 11mlabs/indri-0.1-124m-tts --device cuda:0 --port 8000
```

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{indri-multimodal-alm,
  author       = {11mlabs},
  title        = {Indri: Multimodal audio language model},
  year         = {2024},
  publisher    = {GitHub},
  journal      = {GitHub Repository},
  howpublished = {\url{https://github.com/cmeraki/indri}},
  email        = {[email protected]}
}
```

## BibTex
1. [nanoGPT](https://github.com/karpathy/nanoGPT)
2. [Kyutai/mimi](https://huggingface.co/kyutai/mimi)
```bibtex
@techreport{kyutai2024moshi,
      title={Moshi: a speech-text foundation model for real-time dialogue},
      author={Alexandre D\'efossez and Laurent Mazar\'e and Manu Orsini and
      Am\'elie Royer and Patrick P\'erez and Herv\'e J\'egou and Edouard Grave and Neil Zeghidour},
      year={2024},
      eprint={2410.00037},
      archivePrefix={arXiv},
      primaryClass={eess.AS},
      url={https://arxiv.org/abs/2410.00037},
}
```
3. [Whisper](https://github.com/openai/whisper)
```bibtex
@misc{radford2022whisper,
  doi = {10.48550/ARXIV.2212.04356},
  url = {https://arxiv.org/abs/2212.04356},
  author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
  title = {Robust Speech Recognition via Large-Scale Weak Supervision},
  publisher = {arXiv},
  year = {2022},
  copyright = {arXiv.org perpetual, non-exclusive license}
}
```
4. [silero-vad](https://github.com/snakers4/silero-vad)
```bibtex
@misc{Silero VAD,
  author = {Silero Team},
  title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/snakers4/silero-vad}},
  commit = {insert_some_commit_here},
  email = {[email protected]}
}
```