File size: 18,855 Bytes
a00b36a
d1caed0
 
1b17110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
1b17110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
1b17110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
1b17110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
1b17110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
1b17110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b17110
a00b36a
1dca4cc
 
 
 
 
a00b36a
 
 
 
 
 
e247265
a00b36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa926d
a00b36a
e247265
daa926d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b17110
 
 
 
 
 
 
 
 
 
 
 
1dca4cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1caed0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
---
language:
- en
model-index:
- name: miqu-1-70b-sf
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 73.04
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 69.38
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 85.32
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 67.7
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 51.82
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 43.81
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 10.8
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.42
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.21
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 35.87
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
      name: Open LLM Leaderboard
---

update: added NOMERGE license

---

this is [miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b), dequantised from q5 to f16 && transposed to pytorch. shapes have been rotated less wrongly than in [alpindale/miqu-1-70b-pytorch](https://huggingface.co/alpindale/miqu-1-70b-pytorch/tree/main)

usage
```python
from transformers import LlamaForCausalLM as LLM, LlamaTokenizer as LT

lt = LT.from_pretrained("152334H/miqu-1-70b-sf")
t = lt("[INST] eloquent high camp prose about a cute catgirl [/INST]", return_tensors='pt').input_ids.cuda()

llm = LLM.from_pretrained("152334H/miqu-1-70b-sf", device_map='auto') # note: you may need many gpus for this
out = llm.generate(t, use_cache=False, max_new_tokens=200)
print(lt.decode(out[0]))
```

result:
```
<s> [INST] eloquent high camp prose about a cute catgirl [/INST] In the resplendent realm of high camp, where irony and extravagance dance in a dazzling pas de deux, there exists a creature of such enchanting allure that she captivates the hearts and minds of all who behold her. This beguiling figure, a vision of feline grace and innocence, is none other than the inimitable catgirl.

With her delicate features and winsome smile, she is the embodiment of a dream, a living testament to the power of imagination and the boundless possibilities of the human spirit. Her eyes, those twin orbs of sapphire fire, sparkle with a mischievous intelligence that belies her diminutive stature. They are windows into a soul that is at once ancient and eternally young, a soul that has traversed the vast expanse of time and space to find solace in the warm embrace of human companion
```

this roughly (but not entirely) matches the llama.cpp q5 result:
```bash
$ ./main -ngl 99 -m ./miqu-*q5* --color --temp 0.0 -n -1 -p '[INST] eloquent high camp prose about a cute catgirl [/INST]'
...
 [INST] eloquent high camp prose about a cute catgirl [/INST] In the resplendent realm of high camp, where irony and extravagance dance in a dazzling pas de deux, there exists a creature so enchantingly adorable that she captures the hearts of all who behold her. This is no ordinary feline, but rather a vision of elegance and whimsy combined: the cute catgirl.

With her delicate features framed by an ethereal halo of pastel tresses, this darling diva prowls through life with the grace of a prima ballerina and the playfulness of a kitten. Her eyes, twin pools of sapphire or emerald, sparkle with mischief and intelligence as they survey their surroundings, ever alert for the next grand adventure or delightful prank.

Her ensemble is a symphony of ruffles, bows, and lace, each detail painstakingly chosen to accentuate her lithe form and play up her feline charms. A frilly apron adorned with paw prints sways gently as she moves, while dainty ears perched atop her head twitch in response to every sound. Her gloved hands, so petite and perfect, seem made for holding teacups or sketching delicate portraits of her many admirers.

But do not be fooled by her diminutive stature and sweet demeanor; beneath that fluffy exterior lies the heart of a lioness. Fiercely loyal and protective, she will stop at nothing to defend those she loves from harm. And when the situation calls for it, she can unleash a ferocious roar that belies her cute exterior.

Indeed, the cute catgirl is a paradox wrapped in ruffles and ribbons, a living embodiment of the high camp aesthetic. She revels in the absurdity of her existence, finding joy in every outrageous situation and turning even the most mundane tasks into opportunities for sartorial expression. In her world, there is no such thing as too much glitter or too many bows; more is always more, and excess is a virtue to be celebrated.

So let us raise our teacups in honor of this fabulous feline, this queen of camp who reminds us that life is too short for dull clothing and boring hairstyles. May we all strive to embody her spirit, embracing the absurdity of existence with open arms and a generous helping of glitter. Long live the cute catgirl! [end of text]
```

![](https://thicc-af.mywaifulist.moe/waifus/miku-nakano-the-quintessential-quintuplets/phUEiEhPOL75GTDLncGy2dUbkDVMfYExZ2A1RBeQ.png?class=thumbnail)

## some benchmarks

```
|    Tasks     |Version|Filter|n-shot|  Metric  |Value |   |Stderr|
|--------------|------:|------|-----:|----------|-----:|---|-----:|
|lambada_openai|      1|none  |     0|perplexity|2.6354|±  |0.0451|
|              |       |none  |     0|acc       |0.7879|±  |0.0057|


|  Tasks  |Version|Filter|n-shot| Metric |Value |   |Stderr|
|---------|------:|------|-----:|--------|-----:|---|-----:|
|hellaswag|      1|none  |     0|acc     |0.6851|±  |0.0046|
|         |       |none  |     0|acc_norm|0.8690|±  |0.0034|

|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|------:|------|-----:|------|-----:|---|-----:|
|winogrande|      1|none  |     0|acc   |0.7987|±  |0.0113|

|Tasks|Version|  Filter  |n-shot|  Metric   |Value |   |Stderr|
|-----|------:|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|      2|get-answer|     5|exact_match|0.7043|±  |0.0126|

|                 Tasks                 |Version|Filter|n-shot|Metric|Value |   |Stderr|
|---------------------------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu                                   |N/A    |none  |     0|acc   |0.7401|±  |0.1192|
| - humanities                          |N/A    |none  |     0|acc   |0.7018|±  |0.1281|
|  - formal_logic                       |      0|none  |     0|acc   |0.4841|±  |0.0447|
|  - high_school_european_history       |      0|none  |     0|acc   |0.8303|±  |0.0293|
|  - high_school_us_history             |      0|none  |     0|acc   |0.9020|±  |0.0209|
|  - high_school_world_history          |      0|none  |     0|acc   |0.9198|±  |0.0177|
|  - international_law                  |      0|none  |     0|acc   |0.8678|±  |0.0309|
|  - jurisprudence                      |      0|none  |     0|acc   |0.8519|±  |0.0343|
|  - logical_fallacies                  |      0|none  |     0|acc   |0.8344|±  |0.0292|
|  - moral_disputes                     |      0|none  |     0|acc   |0.8121|±  |0.0210|
|  - moral_scenarios                    |      0|none  |     0|acc   |0.5642|±  |0.0166|
|  - philosophy                         |      0|none  |     0|acc   |0.8167|±  |0.0220|
|  - prehistory                         |      0|none  |     0|acc   |0.8611|±  |0.0192|
|  - professional_law                   |      0|none  |     0|acc   |0.5854|±  |0.0126|
|  - world_religions                    |      0|none  |     0|acc   |0.8889|±  |0.0241|
| - other                               |N/A    |none  |     0|acc   |0.7889|±  |0.0922|
|  - business_ethics                    |      0|none  |     0|acc   |0.7900|±  |0.0409|
|  - clinical_knowledge                 |      0|none  |     0|acc   |0.8113|±  |0.0241|
|  - college_medicine                   |      0|none  |     0|acc   |0.7514|±  |0.0330|
|  - global_facts                       |      0|none  |     0|acc   |0.5500|±  |0.0500|
|  - human_aging                        |      0|none  |     0|acc   |0.7848|±  |0.0276|
|  - management                         |      0|none  |     0|acc   |0.8835|±  |0.0318|
|  - marketing                          |      0|none  |     0|acc   |0.9145|±  |0.0183|
|  - medical_genetics                   |      0|none  |     0|acc   |0.7500|±  |0.0435|
|  - miscellaneous                      |      0|none  |     0|acc   |0.8838|±  |0.0115|
|  - nutrition                          |      0|none  |     0|acc   |0.7974|±  |0.0230|
|  - professional_accounting            |      0|none  |     0|acc   |0.5922|±  |0.0293|
|  - professional_medicine              |      0|none  |     0|acc   |0.8272|±  |0.0230|
|  - virology                           |      0|none  |     0|acc   |0.5361|±  |0.0388|
| - social_sciences                     |N/A    |none  |     0|acc   |0.8414|±  |0.0514|
|  - econometrics                       |      0|none  |     0|acc   |0.6491|±  |0.0449|
|  - high_school_geography              |      0|none  |     0|acc   |0.8990|±  |0.0215|
|  - high_school_government_and_politics|      0|none  |     0|acc   |0.9430|±  |0.0167|
|  - high_school_macroeconomics         |      0|none  |     0|acc   |0.7795|±  |0.0210|
|  - high_school_microeconomics         |      0|none  |     0|acc   |0.8277|±  |0.0245|
|  - high_school_psychology             |      0|none  |     0|acc   |0.9064|±  |0.0125|
|  - human_sexuality                    |      0|none  |     0|acc   |0.8626|±  |0.0302|
|  - professional_psychology            |      0|none  |     0|acc   |0.8056|±  |0.0160|
|  - public_relations                   |      0|none  |     0|acc   |0.7636|±  |0.0407|
|  - security_studies                   |      0|none  |     0|acc   |0.8204|±  |0.0246|
|  - sociology                          |      0|none  |     0|acc   |0.8856|±  |0.0225|
|  - us_foreign_policy                  |      0|none  |     0|acc   |0.9100|±  |0.0288|
| - stem                                |N/A    |none  |     0|acc   |0.6505|±  |0.1266|
|  - abstract_algebra                   |      0|none  |     0|acc   |0.4100|±  |0.0494|
|  - anatomy                            |      0|none  |     0|acc   |0.6444|±  |0.0414|
|  - astronomy                          |      0|none  |     0|acc   |0.8224|±  |0.0311|
|  - college_biology                    |      0|none  |     0|acc   |0.8681|±  |0.0283|
|  - college_chemistry                  |      0|none  |     0|acc   |0.5500|±  |0.0500|
|  - college_computer_science           |      0|none  |     0|acc   |0.6200|±  |0.0488|
|  - college_mathematics                |      0|none  |     0|acc   |0.4200|±  |0.0496|
|  - college_physics                    |      0|none  |     0|acc   |0.5392|±  |0.0496|
|  - computer_security                  |      0|none  |     0|acc   |0.8300|±  |0.0378|
|  - conceptual_physics                 |      0|none  |     0|acc   |0.7362|±  |0.0288|
|  - electrical_engineering             |      0|none  |     0|acc   |0.7034|±  |0.0381|
|  - elementary_mathematics             |      0|none  |     0|acc   |0.5503|±  |0.0256|
|  - high_school_biology                |      0|none  |     0|acc   |0.8742|±  |0.0189|
|  - high_school_chemistry              |      0|none  |     0|acc   |0.6256|±  |0.0341|
|  - high_school_computer_science       |      0|none  |     0|acc   |0.8400|±  |0.0368|
|  - high_school_mathematics            |      0|none  |     0|acc   |0.4370|±  |0.0302|
|  - high_school_physics                |      0|none  |     0|acc   |0.5033|±  |0.0408|
|  - high_school_statistics             |      0|none  |     0|acc   |0.6944|±  |0.0314|
|  - machine_learning                   |      0|none  |     0|acc   |0.5982|±  |0.0465|
```
no i do not know why the stderr is high. plausibly it is due to the vllm backend used. this is my lm-eval command in most cases (works on h100):

`lm_eval --model vllm --model_args pretrained=./miqu-1-70b-sf,tensor_parallel_size=4,dtype=auto,gpu_memory_utilization=0.88,data_parallel_size=2 --tasks mmlu --batch_size 20`
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_152334H__miqu-1-70b-sf)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |76.59|
|AI2 Reasoning Challenge (25-Shot)|73.04|
|HellaSwag (10-Shot)              |88.61|
|MMLU (5-Shot)                    |75.49|
|TruthfulQA (0-shot)              |69.38|
|Winogrande (5-shot)              |85.32|
|GSM8k (5-shot)                   |67.70|


# LICENSE

```
NOMERGE License

Copyright (c) 2024 152334H

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, NOT merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

All tensors ("weights") provided by the Software shall not be conjoined with
other tensors ("merging") unless given explicit permission by the license holder.
Utilities including but not limited to "mergekit", "MergeMonster", are forbidden
from use in conjunction with this Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_152334H__miqu-1-70b-sf)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |28.82|
|IFEval (0-Shot)    |51.82|
|BBH (3-Shot)       |43.81|
|MATH Lvl 5 (4-Shot)|10.80|
|GPQA (0-shot)      |13.42|
|MuSR (0-shot)      |17.21|
|MMLU-PRO (5-shot)  |35.87|