File size: 1,416 Bytes
117c06b
fa5f2e1
117c06b
 
 
 
 
 
 
 
 
 
 
 
fa5f2e1
117c06b
ddefed0
 
 
 
 
 
117c06b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddefed0
117c06b
 
 
 
 
ddefed0
 
117c06b
 
 
294c48d
86baf1e
294c48d
117c06b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
model-index:
- name: fined-tune-thai-sentiment
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fined-tune-thai-sentiment

This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7400
- eval_accuracy: {'accuracy': 0.753968253968254}
- eval_f1score: {'f1': 0.7292250233426704}
- eval_runtime: 0.7627
- eval_samples_per_second: 165.198
- eval_steps_per_second: 20.978
- step: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 43
- num_epochs: 7

### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1