File size: 1,416 Bytes
117c06b fa5f2e1 117c06b fa5f2e1 117c06b ddefed0 117c06b ddefed0 117c06b ddefed0 117c06b 294c48d 86baf1e 294c48d 117c06b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
model-index:
- name: fined-tune-thai-sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fined-tune-thai-sentiment
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7400
- eval_accuracy: {'accuracy': 0.753968253968254}
- eval_f1score: {'f1': 0.7292250233426704}
- eval_runtime: 0.7627
- eval_samples_per_second: 165.198
- eval_steps_per_second: 20.978
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 43
- num_epochs: 7
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|