AELLM commited on
Commit
8561f5d
·
verified ·
1 Parent(s): 398c996

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -176
README.md CHANGED
@@ -1,200 +1,87 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
 
 
 
 
 
 
 
3
  tags:
4
- - llama-factory
5
  ---
 
 
6
 
7
- # Model Card for Model ID
8
 
9
- <!-- Provide a quick summary of what the model is/does. -->
10
 
 
11
 
 
12
 
13
- ## Model Details
14
 
15
- ### Model Description
16
 
17
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
18
 
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
- ### Model Sources [optional]
30
 
31
- <!-- Provide the basic links for the model. -->
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
- ## Uses
 
 
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
 
41
- ### Direct Use
 
 
 
 
 
42
 
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
44
 
45
- [More Information Needed]
46
 
47
- ### Downstream Use [optional]
48
 
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
 
51
- [More Information Needed]
52
-
53
- ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
1
  ---
2
+ license: llama3.2
3
+ language:
4
+ - en
5
+ - ja
6
+ - de
7
+ - fr
8
+ - it
9
+ - pt
10
+ - hi
11
+ - es
12
+ - th
13
  library_name: transformers
14
+ pipeline_tag: text-generation
15
+ base_model: meta-llama/Llama-3.2-3B
16
+ datasets:
17
+ - ryota39/izumi-lab-dpo-45k
18
+ - Aratako/Magpie-Tanuki-8B-97k
19
+ - kunishou/databricks-dolly-15k-ja
20
+ - kunishou/oasst1-89k-ja
21
  tags:
22
+ - llama3.2
23
  ---
24
+ ![chibi-img](./chibi.png)
25
+ ## Preface
26
 
27
+ The importance of a small parameter large language model (LLM) lies in its ability to balance performance and efficiency. As LLMs grow increasingly sophisticated, the trade-off between model size and computational resource demands becomes critical. A smaller parameter model offers significant advantages, such as reduced memory usage, faster inference times, and lower energy consumption, all while retaining a high level of accuracy and contextual understanding. These models are particularly valuable in real-world applications where resources like processing power and storage are limited, such as on mobile devices, edge computing, or low-latency environments.
28
 
29
+ ## Llama 3.2 Chibi 3B
30
 
31
+ This experimental model is the result from continual pre-training of [Meta's Llama 3.2 3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on a small mixture of japanese datasets.
32
 
33
+ ## Architecture
34
 
35
+ [Llama 3.2 3B](https://huggingface.co/meta-llama/Llama-3.2-3B)
36
 
37
+ ## Training
38
 
39
+ The model has been trained with a following mixture of datasets:
40
+ - [ryota39/izumi-lab-dpo-45k](https://huggingface.co/ryota39/izumi-lab-dpo-45k)
41
+ - [Aratako/Magpie-Tanuki-8B-97k](https://huggingface.co/Aratako/Magpie-Tanuki-8B-97k)
42
+ - [kunishou/databricks-dolly-15k-ja](https://huggingface.co/kunishou/databricks-dolly-15k-ja)
43
+ - [kunishou/oasst1-89k-ja](https://huggingface.co/kunishou/oasst1-89k-ja)
44
 
45
+ ## Contributors
46
 
47
+ - [Hammaam](https://huggingface.co/AELLM)
 
 
 
 
 
 
48
 
49
+ ## How to use
50
 
51
+ Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.
52
 
53
+ Make sure to update your transformers installation via pip install --upgrade transformers.
 
 
54
 
55
+ ```python
56
+ import torch
57
+ from transformers import pipeline
58
 
59
+ model_id = "AELLM/Llama-3.2-Chibi-3B"
60
 
61
+ pipe = pipeline(
62
+ "text-generation",
63
+ model=model_id,
64
+ torch_dtype=torch.bfloat16,
65
+ device_map="auto"
66
+ )
67
 
68
+ pipe("人生の鍵は")
69
+ ```
70
 
71
+ # License
72
 
73
+ Refer to [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE)
74
 
75
+ # References
76
 
77
+ ```bibtex
78
+ @inproceedings{zheng2024llamafactory,
79
+ title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
80
+ author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
81
+ booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
82
+ address={Bangkok, Thailand},
83
+ publisher={Association for Computational Linguistics},
84
+ year={2024},
85
+ url={http://arxiv.org/abs/2403.13372}
86
+ }
87
+ ```