Duke-de-Artois
commited on
Upload 4 files
Browse files- configuration_intern_vit.py +2 -1
- configuration_internlm2.py +4 -1
- configuration_internvl_chat.py +1 -1
- modeling_intern_vit.py +2 -1
configuration_intern_vit.py
CHANGED
@@ -17,8 +17,10 @@ class InternVisionConfig(PretrainedConfig):
|
|
17 |
r"""
|
18 |
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
|
|
20 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
22 |
Args:
|
23 |
num_channels (`int`, *optional*, defaults to 3):
|
24 |
Number of color channels in the input images (e.g., 3 for RGB).
|
@@ -116,4 +118,3 @@ class InternVisionConfig(PretrainedConfig):
|
|
116 |
)
|
117 |
|
118 |
return cls.from_dict(config_dict, **kwargs)
|
119 |
-
|
|
|
17 |
r"""
|
18 |
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
20 |
+
|
21 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
Args:
|
25 |
num_channels (`int`, *optional*, defaults to 3):
|
26 |
Number of color channels in the input images (e.g., 3 for RGB).
|
|
|
118 |
)
|
119 |
|
120 |
return cls.from_dict(config_dict, **kwargs)
|
|
configuration_internlm2.py
CHANGED
@@ -29,8 +29,11 @@ class InternLM2Config(PretrainedConfig):
|
|
29 |
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
|
|
32 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
34 |
Args:
|
35 |
vocab_size (`int`, *optional*, defaults to 32000):
|
36 |
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
@@ -66,6 +69,7 @@ class InternLM2Config(PretrainedConfig):
|
|
66 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
67 |
Whether to tie weight embeddings
|
68 |
Example:
|
|
|
69 |
"""
|
70 |
model_type = 'internlm2'
|
71 |
_auto_class = 'AutoConfig'
|
@@ -144,4 +148,3 @@ class InternLM2Config(PretrainedConfig):
|
|
144 |
)
|
145 |
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
146 |
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
147 |
-
|
|
|
29 |
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
30 |
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
32 |
+
|
33 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
Args:
|
38 |
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
|
|
69 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
70 |
Whether to tie weight embeddings
|
71 |
Example:
|
72 |
+
|
73 |
"""
|
74 |
model_type = 'internlm2'
|
75 |
_auto_class = 'AutoConfig'
|
|
|
148 |
)
|
149 |
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
150 |
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|
|
configuration_internvl_chat.py
CHANGED
@@ -73,6 +73,7 @@ class InternVLChatConfig(PretrainedConfig):
|
|
73 |
def to_dict(self):
|
74 |
"""
|
75 |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
|
|
76 |
Returns:
|
77 |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
78 |
"""
|
@@ -93,4 +94,3 @@ class InternVLChatConfig(PretrainedConfig):
|
|
93 |
output['max_dynamic_patch'] = self.max_dynamic_patch
|
94 |
|
95 |
return output
|
96 |
-
|
|
|
73 |
def to_dict(self):
|
74 |
"""
|
75 |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
76 |
+
|
77 |
Returns:
|
78 |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
79 |
"""
|
|
|
94 |
output['max_dynamic_patch'] = self.max_dynamic_patch
|
95 |
|
96 |
return output
|
|
modeling_intern_vit.py
CHANGED
@@ -299,6 +299,7 @@ class InternVisionEncoder(nn.Module):
|
|
299 |
"""
|
300 |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
301 |
[`InternEncoderLayer`].
|
|
|
302 |
Args:
|
303 |
config (`InternConfig`):
|
304 |
The corresponding vision configuration for the `InternEncoder`.
|
@@ -426,4 +427,4 @@ class InternVisionModel(PreTrainedModel):
|
|
426 |
pooler_output=pooled_output,
|
427 |
hidden_states=encoder_outputs.hidden_states,
|
428 |
attentions=encoder_outputs.attentions,
|
429 |
-
)
|
|
|
299 |
"""
|
300 |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
301 |
[`InternEncoderLayer`].
|
302 |
+
|
303 |
Args:
|
304 |
config (`InternConfig`):
|
305 |
The corresponding vision configuration for the `InternEncoder`.
|
|
|
427 |
pooler_output=pooled_output,
|
428 |
hidden_states=encoder_outputs.hidden_states,
|
429 |
attentions=encoder_outputs.attentions,
|
430 |
+
)
|