Update README.md (#5)
Browse files- Update README.md (e6dc510136b1259e0de2edd29287893ab8838f5b)
Co-authored-by: Shinawatra nach <[email protected]>
README.md
CHANGED
@@ -8,4 +8,34 @@ language:
|
|
8 |
pipeline_tag: text-generation
|
9 |
tags:
|
10 |
- code_generation
|
11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
pipeline_tag: text-generation
|
9 |
tags:
|
10 |
- code_generation
|
11 |
+
---
|
12 |
+
|
13 |
+
Example inference using huggingface transformers.
|
14 |
+
```python
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
|
16 |
+
import pandas as pd
|
17 |
+
|
18 |
+
def get_prediction(raw_prediction):
|
19 |
+
if "[/INST]" in raw_prediction:
|
20 |
+
index = raw_prediction.index("[/INST]")
|
21 |
+
return raw_prediction[index + 7:]
|
22 |
+
|
23 |
+
return raw_prediction
|
24 |
+
|
25 |
+
tokenizer = LlamaTokenizer.from_pretrained("AIAT/Pangpuriye-openthaigpt-1.0.0-7b-chat", trust_remote_code=True)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained("AIAT/Pangpuriye-openthaigpt-1.0.0-7b-chat", trust_remote_code=True)
|
27 |
+
|
28 |
+
schema = """your SQL schema"""
|
29 |
+
query = "หาจำนวนลูกค้าที่เป็นเพศชาย"
|
30 |
+
|
31 |
+
prompt = f"""
|
32 |
+
[INST] <<SYS>>
|
33 |
+
You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด
|
34 |
+
<</SYS>>
|
35 |
+
{schema}### (sql extract) {query} [/INST]
|
36 |
+
"""
|
37 |
+
|
38 |
+
tokens = tokenizer(prompt, return_tensors="pt")
|
39 |
+
output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id)
|
40 |
+
print(get_prediction(tokenizer.decode(output[0], skip_special_tokens=True)))
|
41 |
+
```
|