|
import logging |
|
import os |
|
from importlib import import_module |
|
from typing import List, Callable, Union, Optional, Dict |
|
|
|
import PIL.Image |
|
import torch |
|
from torch import Tensor |
|
from torch.nn import init |
|
from torch.nn.functional import softmax, gumbel_softmax, pad |
|
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor |
|
from transformers import SiglipImageProcessor, SiglipVisionModel |
|
from transformers.cache_utils import HybridCache |
|
from transformers.generation.utils import GenerateOutput |
|
|
|
from .configuration_ovis import BaseVisualTokenizerConfig, SiglipVisualTokenizerConfig |
|
from .configuration_ovis import OvisConfig, ConversationFormatter |
|
from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID |
|
|
|
|
|
|
|
|
|
|
|
class BaseVisualTokenizer(PreTrainedModel): |
|
base_model_prefix = "backbone" |
|
main_input_name = None |
|
_image_processor_class = None |
|
_image_processor_kwargs = {} |
|
_backbone_class = None |
|
_backbone_name_or_path = None |
|
|
|
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path']) |
|
self.backbone = AutoModel.from_config(self.config.backbone_config) |
|
head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) |
|
self.head = torch.nn.Sequential( |
|
torch.nn.Linear( |
|
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim, |
|
bias=False |
|
), |
|
torch.nn.LayerNorm(head_dim) |
|
) |
|
|
|
assert all((self.image_processor.do_resize, |
|
not getattr(self.image_processor, 'do_center_crop', False), |
|
self.image_processor.do_rescale, |
|
self.image_processor.do_normalize |
|
)), f"image_processor `{self.image_processor}` is not supported currently" |
|
|
|
def get_backbone(self): |
|
return self.backbone |
|
|
|
def get_image_processor(self): |
|
return self.image_processor |
|
|
|
def mock_input(self): |
|
height, width = self.get_image_size() |
|
return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1)) |
|
|
|
def get_head(self): |
|
return self.head |
|
|
|
def get_image_size(self): |
|
raise NotImplementedError |
|
|
|
@staticmethod |
|
def construct_image_placeholders(grid): |
|
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]] |
|
if grid[0] * grid[1] > 1: |
|
for r in range(grid[0]): |
|
for c in range(grid[1]): |
|
image_placeholders.append(IMAGE_ATOM_ID) |
|
if c < grid[1] - 1: |
|
image_placeholders.append(IMAGE_INDICATOR_IDS[2]) |
|
if r < grid[0] - 1: |
|
image_placeholders.append(IMAGE_INDICATOR_IDS[3]) |
|
image_placeholders.append(IMAGE_INDICATOR_IDS[4]) |
|
return image_placeholders |
|
|
|
def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True): |
|
def _preprocess(img: PIL.Image.Image, side): |
|
|
|
w, h = img.size |
|
if w == h: |
|
new_width = new_height = side |
|
elif w > h: |
|
new_width = side |
|
new_height = int(h / w * new_width) |
|
else: |
|
new_height = side |
|
new_width = int(w / h * new_height) |
|
new_size = dict(height=new_height, width=new_width) |
|
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values'] |
|
|
|
|
|
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device) |
|
new_height, new_width = pixel_values.shape[2:] |
|
if new_height == new_width: |
|
square_values[:, :, :, :] = pixel_values |
|
elif new_height > new_width: |
|
from_index = (side - new_width) // 2 |
|
square_values[:, :, :, from_index:from_index + new_width] = pixel_values |
|
else: |
|
from_index = (side - new_height) // 2 |
|
square_values[:, :, from_index:from_index + new_height, :] = pixel_values |
|
|
|
return square_values |
|
|
|
def _partition(img, grid): |
|
w, h = img.size |
|
row_height = h // grid[0] |
|
col_width = w // grid[1] |
|
|
|
partition = [] |
|
for row in range(grid[0]): |
|
for col in range(grid[1]): |
|
left = col * col_width |
|
upper = row * row_height |
|
right = w if col == grid[1] - 1 else (col + 1) * col_width |
|
lower = h if row == grid[0] - 1 else (row + 1) * row_height |
|
partition.append((left, upper, right, lower)) |
|
|
|
return partition |
|
|
|
def _covering_area(left, upper, right, lower, side): |
|
w = right - left |
|
h = lower - upper |
|
w, h = max(w, h), min(w, h) |
|
if w > side: |
|
h = h / w * side |
|
w = side |
|
return w * h |
|
|
|
def _get_best_grid(img, side): |
|
img_area = img.size[0] * img.size[1] |
|
|
|
candidate_grids = [] |
|
for i in range(1, max_partition + 1): |
|
for j in range(1, max_partition + 1): |
|
if i * j <= max_partition: |
|
candidate_grids.append((i, j)) |
|
|
|
all_grids = [] |
|
good_grids = [] |
|
for grid in candidate_grids: |
|
partition = _partition(img, grid) |
|
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area |
|
assert covering_ratio <= 1.0 |
|
all_grids.append((grid, covering_ratio)) |
|
if covering_ratio > covering_threshold: |
|
good_grids.append((grid, covering_ratio)) |
|
|
|
if len(good_grids) > 0: |
|
|
|
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0] |
|
else: |
|
|
|
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0] |
|
|
|
if convert_to_rgb and image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
|
|
sides = self.get_image_size() |
|
if sides[0] != sides[1]: |
|
raise ValueError('get_image_size() returns non-square size') |
|
side = sides[0] |
|
grid = _get_best_grid(image, side) |
|
partition = _partition(image, grid) |
|
crops = [image.crop(p) for p in partition] |
|
if len(crops) > 1: |
|
crops.insert(0, image) |
|
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0) |
|
image_placeholders = self.construct_image_placeholders(grid) |
|
return pixel_values, image_placeholders |
|
|
|
def tokenize(self, logits): |
|
def st_argmax(y_soft, dim): |
|
index = y_soft.max(dim, keepdim=True)[1] |
|
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) |
|
ret = y_hard - y_soft.detach() + y_soft |
|
return ret |
|
|
|
if self.config.tokenize_function == 'softmax': |
|
tokens = softmax(logits, dim=-1) |
|
elif self.config.tokenize_function == 'gumbel_argmax': |
|
tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True) |
|
elif self.config.tokenize_function == 'st_argmax': |
|
tokens = st_argmax(logits, dim=-1) |
|
else: |
|
raise ValueError( |
|
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}') |
|
return tokens |
|
|
|
def encode(self, pixel_values): |
|
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True) |
|
features = output.hidden_states[-1] |
|
if self.config.drop_cls_token: |
|
features = features[:, 1:, :] |
|
|
|
|
|
|
|
if self.config.hidden_stride > 1: |
|
n, l, d = features.shape |
|
sqrt_l = int(l ** 0.5) |
|
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square." |
|
features = features.reshape(n, sqrt_l, sqrt_l, d) |
|
pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride |
|
features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0) |
|
sqrt_l += pl |
|
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride, |
|
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d) |
|
features = features.permute(0, 1, 3, 2, 4, 5) |
|
features = features.flatten(3) |
|
features = features.reshape( |
|
n, -1, self.config.hidden_stride * self.config.hidden_stride * d) |
|
|
|
return features |
|
|
|
def forward(self, pixel_values) -> torch.Tensor: |
|
features = self.encode(pixel_values) |
|
logits = self.head(features) |
|
tokens = self.tokenize(logits) |
|
|
|
|
|
batch_size, token_len, _ = tokens.shape |
|
padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)), |
|
dtype=tokens.dtype, |
|
device=tokens.device, |
|
layout=tokens.layout, |
|
requires_grad=False) |
|
tokens = torch.cat((tokens, padding_tensor), dim=2) |
|
return tokens |
|
|
|
|
|
class SiglipVisualTokenizer(BaseVisualTokenizer): |
|
config_class = SiglipVisualTokenizerConfig |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SiglipVisionTransformer"] |
|
_image_processor_class = SiglipImageProcessor |
|
_image_processor_kwargs = {} |
|
_backbone_class = SiglipVisionModel |
|
_backbone_name_or_path = "google/siglip-so400m-patch14-384" |
|
|
|
def get_image_size(self): |
|
height = self.image_processor.size["height"] |
|
width = self.image_processor.size["width"] |
|
return height, width |
|
|
|
|
|
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer) |
|
|
|
|
|
|
|
|
|
|
|
class VisualEmbedding(torch.nn.Embedding): |
|
def forward(self, visual_tokens: Tensor) -> Tensor: |
|
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]: |
|
return super().forward(visual_tokens) |
|
return torch.matmul(visual_tokens, self.weight) |
|
|
|
def reset_parameters(self, mean=0., std=1.) -> None: |
|
init.normal_(self.weight, mean=mean, std=std) |
|
self._fill_padding_idx_with_zero() |
|
|
|
|
|
class OvisPreTrainedModel(PreTrainedModel): |
|
config_class = OvisConfig |
|
base_model_prefix = "ovis" |
|
|
|
|
|
class Ovis(OvisPreTrainedModel): |
|
|
|
def __init__(self, config: OvisConfig, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
attn_kwargs = dict() |
|
if self.config.llm_attn_implementation: |
|
attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation |
|
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs) |
|
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch" |
|
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path) |
|
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config, |
|
image_processor_name_or_path=self.config.name_or_path) |
|
self.vte = VisualEmbedding( |
|
self.config.visual_tokenizer_config.vocab_size, |
|
self.config.hidden_size, |
|
device=self.visual_tokenizer.device, |
|
dtype=self.visual_tokenizer.dtype |
|
) |
|
|
|
def _merge_modules(modules_list: tuple): |
|
merged_modules = [] |
|
for modules in modules_list: |
|
merged_modules.extend(modules if modules else []) |
|
return merged_modules |
|
|
|
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules)) |
|
self._skip_keys_device_placement = self.llm._skip_keys_device_placement |
|
self._keep_in_fp32_modules = _merge_modules( |
|
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules)) |
|
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable)) |
|
self.supports_gradient_checkpointing = all( |
|
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing)) |
|
self._supports_flash_attn_2 = all( |
|
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2)) |
|
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa)) |
|
|
|
def get_text_tokenizer(self): |
|
return self.text_tokenizer |
|
|
|
def get_visual_tokenizer(self): |
|
return self.visual_tokenizer |
|
|
|
def tie_weights(self): |
|
if not self.config.disable_tie_weight: |
|
self.get_llm().tie_weights() |
|
|
|
def get_llm(self): |
|
return self.llm |
|
|
|
def get_vte(self): |
|
return self.vte |
|
|
|
def get_wte(self): |
|
return self.llm.get_input_embeddings() |
|
|
|
def get_conversation_formatter(self) -> ConversationFormatter: |
|
if getattr(self, 'conversation_formatter', None) is None: |
|
self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__), |
|
self.config.conversation_formatter_class)(self.text_tokenizer) |
|
return self.conversation_formatter |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
labels: Optional[torch.Tensor], |
|
pixel_values: List[Optional[torch.Tensor]], |
|
**kwargs |
|
): |
|
|
|
_, inputs_embeds, labels, attention_mask = self.merge_multimodal( |
|
text_input_ids=input_ids, |
|
text_attention_masks=attention_mask, |
|
text_labels=labels, |
|
pixel_values=pixel_values |
|
) |
|
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs) |
|
|
|
def merge_multimodal( |
|
self, |
|
text_input_ids: torch.Tensor, |
|
text_attention_masks: torch.Tensor, |
|
text_labels: Optional[torch.Tensor], |
|
pixel_values: List[Optional[torch.Tensor]], |
|
left_padding: bool = False |
|
): |
|
input_device = text_input_ids.device |
|
visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size |
|
visual_indicator_embeds = self.get_vte()( |
|
torch.tensor( |
|
list(range(visual_vocab_szie - 5, visual_vocab_szie)), |
|
dtype=torch.long, |
|
device=self.get_visual_tokenizer().device |
|
) |
|
).to(device=input_device) |
|
|
|
if self.training: |
|
|
|
|
|
|
|
num_images = [x.shape[0] for x in pixel_values] |
|
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0)) |
|
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device), |
|
split_size_or_sections=num_images, dim=0) |
|
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device), |
|
split_size_or_sections=num_images, dim=0) |
|
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in |
|
visual_input_ids] |
|
else: |
|
|
|
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values] |
|
if sum(num_images) > 0: |
|
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0)) |
|
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device), |
|
split_size_or_sections=num_images, dim=0) |
|
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device), |
|
split_size_or_sections=num_images, dim=0) |
|
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in |
|
visual_input_ids] |
|
else: |
|
|
|
visual_embeds = [None] * len(num_images) |
|
visual_input_ids = [None] * len(num_images) |
|
visual_labels = [None] * len(num_images) |
|
if text_labels is None: |
|
text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device) |
|
|
|
input_embeds = [] |
|
attention_masks = [] |
|
labels = [] |
|
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip( |
|
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels |
|
): |
|
placeholder_token_mask = torch.lt(text_input_id, 0) |
|
text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0)) |
|
for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS): |
|
text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i] |
|
image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist() |
|
if len(image_atom_positions) > 0: |
|
input_embed_parts = [] |
|
attention_mask_parts = [] |
|
label_parts = [] |
|
prev_image_atom_position = -1 |
|
for index, image_atom_position in enumerate(image_atom_positions): |
|
input_embed_parts.append( |
|
text_embed[prev_image_atom_position + 1:image_atom_position, :]) |
|
label_parts.append( |
|
text_label[prev_image_atom_position + 1:image_atom_position]) |
|
attention_mask_parts.append( |
|
text_attention_mask[prev_image_atom_position + 1:image_atom_position]) |
|
input_embed_parts.append(visual_embed[index]) |
|
attention_mask_parts.append( |
|
torch.ones_like(visual_label[index], dtype=torch.bool)) |
|
label_parts.append(visual_label[index]) |
|
prev_image_atom_position = image_atom_position |
|
if prev_image_atom_position + 1 < text_input_id.shape[0]: |
|
input_embed_parts.append( |
|
text_embed[prev_image_atom_position + 1:, :]) |
|
attention_mask_parts.append( |
|
text_attention_mask[prev_image_atom_position + 1:]) |
|
label_parts.append( |
|
text_label[prev_image_atom_position + 1:]) |
|
input_embed = torch.cat(input_embed_parts, dim=0) |
|
attention_mask = torch.cat(attention_mask_parts, dim=0) |
|
label = torch.cat(label_parts, dim=0) |
|
else: |
|
input_embed = text_embed |
|
attention_mask = text_attention_mask |
|
label = text_label |
|
if self.training: |
|
|
|
|
|
input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0) |
|
input_embeds.append(input_embed) |
|
attention_masks.append(attention_mask) |
|
labels.append(label) |
|
|
|
if self.training: |
|
padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0])) |
|
input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0]) |
|
attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0]) |
|
labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0]) |
|
batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding) |
|
batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding) |
|
batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding) |
|
|
|
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask |
|
|
|
def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor: |
|
if left_padding == False: |
|
pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value) |
|
return pad_sequence[:,:self.config.multimodal_max_length] |
|
else: |
|
pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1]) |
|
return pad_sequence[:,-self.config.multimodal_max_length:] |
|
|
|
def preprocess_inputs( |
|
self, |
|
text_or_conversations: Union[List[Dict], str], |
|
images: Optional[List[PIL.Image.Image]], |
|
max_partition=9, |
|
generation_preface='', |
|
return_labels=False, |
|
propagate_exception=True |
|
): |
|
|
|
if isinstance(text_or_conversations, str): |
|
conversations = [{ |
|
"from": "human", |
|
"value": text_or_conversations |
|
}] |
|
elif isinstance(text_or_conversations, list): |
|
conversations = text_or_conversations |
|
else: |
|
raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,' |
|
f' but got {type(text_or_conversations)}') |
|
|
|
|
|
prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format( |
|
conversations, generation_preface=generation_preface) |
|
|
|
|
|
input_ids = [] |
|
labels = [] |
|
pixel_values = [] |
|
invalidate_label = False |
|
image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID] |
|
last_image_token_index = -1 |
|
for i in range(len(image_token_indices)): |
|
head = 0 if i == 0 else image_token_indices[i - 1] + 1 |
|
tail = image_token_indices[i] |
|
last_image_token_index = tail |
|
input_ids.extend(raw_input_ids[head:tail]) |
|
labels.extend(raw_labels[head:tail]) |
|
try: |
|
image = images[i] |
|
raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image( |
|
image, max_partition=max_partition) |
|
except Exception as e: |
|
if propagate_exception: |
|
raise e |
|
logging.exception(e) |
|
invalidate_label = True |
|
raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input() |
|
input_ids.extend(image_placeholders) |
|
labels.extend([IGNORE_ID] * len(image_placeholders)) |
|
pixel_values.append(raw_pixel_values) |
|
input_ids.extend(raw_input_ids[last_image_token_index + 1:]) |
|
labels.extend(raw_labels[last_image_token_index + 1:]) |
|
|
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.long) |
|
labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long) |
|
pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None |
|
|
|
if return_labels: |
|
return prompt, input_ids, pixel_values, labels |
|
else: |
|
return prompt, input_ids, pixel_values |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
state_dict: Optional[dict] = None, |
|
save_function: Callable = torch.save, |
|
push_to_hub: bool = False, |
|
max_shard_size: Union[int, str] = "5GB", |
|
safe_serialization: bool = True, |
|
variant: Optional[str] = None, |
|
token: Optional[Union[str, bool]] = None, |
|
save_peft_format: bool = True, |
|
**kwargs |
|
): |
|
super().save_pretrained(save_directory, |
|
is_main_process=is_main_process, |
|
state_dict=state_dict, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization) |
|
self.get_text_tokenizer().save_pretrained(save_directory) |
|
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory) |
|
|
|
def _get_hybrid_cache_for_llm(self, max_batch_size: int, max_cache_len: int): |
|
cache_cls = HybridCache |
|
llm = self.get_llm() |
|
|
|
need_new_cache = ( |
|
not hasattr(llm, "_cache") |
|
or (not isinstance(llm._cache, cache_cls)) |
|
or llm._cache.max_batch_size != max_batch_size |
|
or llm._cache.max_cache_len < max_cache_len |
|
) |
|
|
|
if need_new_cache: |
|
if hasattr(llm.config, "_pre_quantization_dtype"): |
|
cache_dtype = llm.config._pre_quantization_dtype |
|
else: |
|
cache_dtype = llm.dtype |
|
llm._cache = cache_cls( |
|
config=llm.config, |
|
max_batch_size=max_batch_size, |
|
max_cache_len=max_cache_len, |
|
device=llm.device, |
|
dtype=cache_dtype, |
|
) |
|
else: |
|
llm._cache.reset() |
|
return llm._cache |
|
|
|
|
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
**kwargs |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
_, inputs_embeds, labels, attention_mask = self.merge_multimodal( |
|
text_input_ids=inputs, |
|
text_attention_masks=kwargs.pop('attention_mask'), |
|
text_labels=None, |
|
pixel_values=kwargs.pop('pixel_values'), |
|
left_padding=True |
|
) |
|
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': |
|
kwargs['past_key_values'] = self._get_hybrid_cache_for_llm( |
|
getattr(kwargs, "num_beams", inputs_embeds.shape[0]), kwargs['max_new_tokens'] + inputs_embeds.shape[-2]) |
|
self.get_llm()._supports_cache_class = True |
|
kwargs['cache_implementation'] = None |
|
|
|
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs) |
|
|