File size: 28,838 Bytes
87db944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import logging
import os
from importlib import import_module
from typing import List, Callable, Union, Optional, Dict
import PIL.Image
import torch
from torch import Tensor
from torch.nn import init
from torch.nn.functional import softmax, gumbel_softmax, pad
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
from transformers import SiglipImageProcessor, SiglipVisionModel
from transformers.cache_utils import HybridCache
from transformers.generation.utils import GenerateOutput
from .configuration_ovis import BaseVisualTokenizerConfig, SiglipVisualTokenizerConfig
from .configuration_ovis import OvisConfig, ConversationFormatter
from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID
# ----------------------------------------------------------------------
# Visual Tokenizer
# ----------------------------------------------------------------------
class BaseVisualTokenizer(PreTrainedModel):
base_model_prefix = "backbone"
main_input_name = None
_image_processor_class = None
_image_processor_kwargs = {}
_backbone_class = None
_backbone_name_or_path = None
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
self.backbone = AutoModel.from_config(self.config.backbone_config)
head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
self.head = torch.nn.Sequential(
torch.nn.Linear(
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
bias=False
),
torch.nn.LayerNorm(head_dim)
)
assert all((self.image_processor.do_resize,
not getattr(self.image_processor, 'do_center_crop', False),
self.image_processor.do_rescale,
self.image_processor.do_normalize
)), f"image_processor `{self.image_processor}` is not supported currently"
def get_backbone(self):
return self.backbone
def get_image_processor(self):
return self.image_processor
def mock_input(self):
height, width = self.get_image_size()
return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
def get_head(self):
return self.head
def get_image_size(self):
raise NotImplementedError
@staticmethod
def construct_image_placeholders(grid):
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
if grid[0] * grid[1] > 1:
for r in range(grid[0]):
for c in range(grid[1]):
image_placeholders.append(IMAGE_ATOM_ID)
if c < grid[1] - 1:
image_placeholders.append(IMAGE_INDICATOR_IDS[2])
if r < grid[0] - 1:
image_placeholders.append(IMAGE_INDICATOR_IDS[3])
image_placeholders.append(IMAGE_INDICATOR_IDS[4])
return image_placeholders
def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
def _preprocess(img: PIL.Image.Image, side):
# first resize and preprocess
w, h = img.size
if w == h:
new_width = new_height = side
elif w > h:
new_width = side
new_height = int(h / w * new_width)
else:
new_height = side
new_width = int(w / h * new_height)
new_size = dict(height=new_height, width=new_width)
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
# then pad to square
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
new_height, new_width = pixel_values.shape[2:]
if new_height == new_width:
square_values[:, :, :, :] = pixel_values
elif new_height > new_width:
from_index = (side - new_width) // 2
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
else:
from_index = (side - new_height) // 2
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
return square_values
def _partition(img, grid):
w, h = img.size
row_height = h // grid[0]
col_width = w // grid[1]
partition = []
for row in range(grid[0]):
for col in range(grid[1]):
left = col * col_width
upper = row * row_height
right = w if col == grid[1] - 1 else (col + 1) * col_width
lower = h if row == grid[0] - 1 else (row + 1) * row_height
partition.append((left, upper, right, lower))
return partition
def _covering_area(left, upper, right, lower, side):
w = right - left
h = lower - upper
w, h = max(w, h), min(w, h)
if w > side:
h = h / w * side
w = side
return w * h
def _get_best_grid(img, side):
img_area = img.size[0] * img.size[1]
candidate_grids = []
for i in range(1, max_partition + 1):
for j in range(1, max_partition + 1):
if i * j <= max_partition:
candidate_grids.append((i, j))
all_grids = []
good_grids = []
for grid in candidate_grids:
partition = _partition(img, grid)
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
assert covering_ratio <= 1.0
all_grids.append((grid, covering_ratio))
if covering_ratio > covering_threshold:
good_grids.append((grid, covering_ratio))
if len(good_grids) > 0:
# pick the good partition with minimum #sub_images and break the tie using covering_ratio
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
else:
# pick the partition with maximum covering_ratio and break the tie using #sub_images
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
if convert_to_rgb and image.mode != 'RGB':
image = image.convert('RGB')
sides = self.get_image_size()
if sides[0] != sides[1]:
raise ValueError('get_image_size() returns non-square size')
side = sides[0]
grid = _get_best_grid(image, side)
partition = _partition(image, grid)
crops = [image.crop(p) for p in partition]
if len(crops) > 1:
crops.insert(0, image)
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
image_placeholders = self.construct_image_placeholders(grid)
return pixel_values, image_placeholders
def tokenize(self, logits):
def st_argmax(y_soft, dim): # straight-through softmax
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
return ret
if self.config.tokenize_function == 'softmax':
tokens = softmax(logits, dim=-1)
elif self.config.tokenize_function == 'gumbel_argmax':
tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
elif self.config.tokenize_function == 'st_argmax':
tokens = st_argmax(logits, dim=-1)
else:
raise ValueError(
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
return tokens
def encode(self, pixel_values):
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
features = output.hidden_states[-1]
if self.config.drop_cls_token:
features = features[:, 1:, :]
# merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
# e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81 for siglip
if self.config.hidden_stride > 1:
n, l, d = features.shape # this `d` maybe different from the above `d
sqrt_l = int(l ** 0.5)
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
features = features.reshape(n, sqrt_l, sqrt_l, d)
pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
sqrt_l += pl
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
features = features.reshape(
n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
return features
def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
features = self.encode(pixel_values)
logits = self.head(features)
tokens = self.tokenize(logits)
# tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
# which, tokens' shape should become [BatchSize, #Token, VocabSize]
batch_size, token_len, _ = tokens.shape
padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
dtype=tokens.dtype,
device=tokens.device,
layout=tokens.layout,
requires_grad=False)
tokens = torch.cat((tokens, padding_tensor), dim=2)
return tokens
class SiglipVisualTokenizer(BaseVisualTokenizer):
config_class = SiglipVisualTokenizerConfig
supports_gradient_checkpointing = True
_no_split_modules = ["SiglipVisionTransformer"]
_image_processor_class = SiglipImageProcessor
_image_processor_kwargs = {}
_backbone_class = SiglipVisionModel
_backbone_name_or_path = "google/siglip-so400m-patch14-384"
def get_image_size(self):
height = self.image_processor.size["height"]
width = self.image_processor.size["width"]
return height, width
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
# ----------------------------------------------------------------------
# Ovis
# ----------------------------------------------------------------------
class VisualEmbedding(torch.nn.Embedding):
def forward(self, visual_tokens: Tensor) -> Tensor:
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
return super().forward(visual_tokens)
return torch.matmul(visual_tokens, self.weight)
def reset_parameters(self, mean=0., std=1.) -> None:
init.normal_(self.weight, mean=mean, std=std)
self._fill_padding_idx_with_zero()
class OvisPreTrainedModel(PreTrainedModel):
config_class = OvisConfig
base_model_prefix = "ovis"
class Ovis(OvisPreTrainedModel):
def __init__(self, config: OvisConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
attn_kwargs = dict()
if self.config.llm_attn_implementation:
attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
image_processor_name_or_path=self.config.name_or_path)
self.vte = VisualEmbedding(
self.config.visual_tokenizer_config.vocab_size,
self.config.hidden_size,
device=self.visual_tokenizer.device,
dtype=self.visual_tokenizer.dtype
)
def _merge_modules(modules_list: tuple):
merged_modules = []
for modules in modules_list:
merged_modules.extend(modules if modules else [])
return merged_modules
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
self._keep_in_fp32_modules = _merge_modules(
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
self.supports_gradient_checkpointing = all(
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
self._supports_flash_attn_2 = all(
(self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))
def get_text_tokenizer(self):
return self.text_tokenizer
def get_visual_tokenizer(self):
return self.visual_tokenizer
def tie_weights(self):
if not self.config.disable_tie_weight:
self.get_llm().tie_weights()
def get_llm(self):
return self.llm
def get_vte(self):
return self.vte
def get_wte(self):
return self.llm.get_input_embeddings()
def get_conversation_formatter(self) -> ConversationFormatter:
if getattr(self, 'conversation_formatter', None) is None:
self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__),
self.config.conversation_formatter_class)(self.text_tokenizer)
return self.conversation_formatter
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
labels: Optional[torch.Tensor],
pixel_values: List[Optional[torch.Tensor]],
**kwargs
):
# assert self.training, "`forward` can only be used in training. For inference, use `generate`."
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
text_input_ids=input_ids,
text_attention_masks=attention_mask,
text_labels=labels,
pixel_values=pixel_values
)
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
def merge_multimodal(
self,
text_input_ids: torch.Tensor,
text_attention_masks: torch.Tensor,
text_labels: Optional[torch.Tensor],
pixel_values: List[Optional[torch.Tensor]],
left_padding: bool = False
):
input_device = text_input_ids.device
visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
visual_indicator_embeds = self.get_vte()(
torch.tensor(
list(range(visual_vocab_szie - 5, visual_vocab_szie)),
dtype=torch.long,
device=self.get_visual_tokenizer().device
)
).to(device=input_device)
if self.training:
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
# (see below in this function); so, the gradient will not be affected.
num_images = [x.shape[0] for x in pixel_values]
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
split_size_or_sections=num_images, dim=0)
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
split_size_or_sections=num_images, dim=0)
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
visual_input_ids]
else:
# When inference, sample can include only text with `None` pixel_value
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
if sum(num_images) > 0:
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
split_size_or_sections=num_images, dim=0)
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
split_size_or_sections=num_images, dim=0)
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
visual_input_ids]
else:
# just placeholders
visual_embeds = [None] * len(num_images)
visual_input_ids = [None] * len(num_images)
visual_labels = [None] * len(num_images)
if text_labels is None:
text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
input_embeds = []
attention_masks = []
labels = []
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
):
placeholder_token_mask = torch.lt(text_input_id, 0)
text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
if len(image_atom_positions) > 0:
input_embed_parts = []
attention_mask_parts = []
label_parts = []
prev_image_atom_position = -1
for index, image_atom_position in enumerate(image_atom_positions):
input_embed_parts.append(
text_embed[prev_image_atom_position + 1:image_atom_position, :])
label_parts.append(
text_label[prev_image_atom_position + 1:image_atom_position])
attention_mask_parts.append(
text_attention_mask[prev_image_atom_position + 1:image_atom_position])
input_embed_parts.append(visual_embed[index])
attention_mask_parts.append(
torch.ones_like(visual_label[index], dtype=torch.bool))
label_parts.append(visual_label[index])
prev_image_atom_position = image_atom_position
if prev_image_atom_position + 1 < text_input_id.shape[0]:
input_embed_parts.append(
text_embed[prev_image_atom_position + 1:, :])
attention_mask_parts.append(
text_attention_mask[prev_image_atom_position + 1:])
label_parts.append(
text_label[prev_image_atom_position + 1:])
input_embed = torch.cat(input_embed_parts, dim=0)
attention_mask = torch.cat(attention_mask_parts, dim=0)
label = torch.cat(label_parts, dim=0)
else:
input_embed = text_embed
attention_mask = text_attention_mask
label = text_label
if self.training:
# Make visual_embed & visual_indicator_embeds involved in the backward graph,
# to be compatible with deepspeed zero and ddp.
input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
input_embeds.append(input_embed)
attention_masks.append(attention_mask)
labels.append(label)
if self.training: # padding to self.config.multimodal_max_length for increased training speed
padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
if left_padding == False:
pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
return pad_sequence[:,:self.config.multimodal_max_length]
else:
pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
return pad_sequence[:,-self.config.multimodal_max_length:]
def preprocess_inputs(
self,
text_or_conversations: Union[List[Dict], str],
images: Optional[List[PIL.Image.Image]],
max_partition=9,
generation_preface='',
return_labels=False,
propagate_exception=True
):
# convert text to conversations
if isinstance(text_or_conversations, str):
conversations = [{
"from": "human",
"value": text_or_conversations
}]
elif isinstance(text_or_conversations, list):
conversations = text_or_conversations
else:
raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
f' but got {type(text_or_conversations)}')
# format conversations
prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
conversations, generation_preface=generation_preface)
# place image placeholders
input_ids = []
labels = []
pixel_values = []
invalidate_label = False
image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
last_image_token_index = -1
for i in range(len(image_token_indices)):
head = 0 if i == 0 else image_token_indices[i - 1] + 1
tail = image_token_indices[i]
last_image_token_index = tail
input_ids.extend(raw_input_ids[head:tail])
labels.extend(raw_labels[head:tail])
try:
image = images[i]
raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
image, max_partition=max_partition)
except Exception as e:
if propagate_exception:
raise e
logging.exception(e)
invalidate_label = True
raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
input_ids.extend(image_placeholders)
labels.extend([IGNORE_ID] * len(image_placeholders))
pixel_values.append(raw_pixel_values)
input_ids.extend(raw_input_ids[last_image_token_index + 1:])
labels.extend(raw_labels[last_image_token_index + 1:])
# return tensors
input_ids = torch.tensor(input_ids, dtype=torch.long)
labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
if return_labels:
return prompt, input_ids, pixel_values, labels
else:
return prompt, input_ids, pixel_values
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
state_dict: Optional[dict] = None,
save_function: Callable = torch.save,
push_to_hub: bool = False,
max_shard_size: Union[int, str] = "5GB",
safe_serialization: bool = True,
variant: Optional[str] = None,
token: Optional[Union[str, bool]] = None,
save_peft_format: bool = True,
**kwargs
):
super().save_pretrained(save_directory,
is_main_process=is_main_process,
state_dict=state_dict,
save_function=save_function,
safe_serialization=safe_serialization)
self.get_text_tokenizer().save_pretrained(save_directory)
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
def _get_hybrid_cache_for_llm(self, max_batch_size: int, max_cache_len: int):
cache_cls = HybridCache
llm = self.get_llm()
need_new_cache = (
not hasattr(llm, "_cache")
or (not isinstance(llm._cache, cache_cls))
or llm._cache.max_batch_size != max_batch_size
or llm._cache.max_cache_len < max_cache_len
)
if need_new_cache:
if hasattr(llm.config, "_pre_quantization_dtype"):
cache_dtype = llm.config._pre_quantization_dtype
else:
cache_dtype = llm.dtype
llm._cache = cache_cls(
config=llm.config,
max_batch_size=max_batch_size,
max_cache_len=max_cache_len,
device=llm.device,
dtype=cache_dtype,
)
else:
llm._cache.reset()
return llm._cache
# TODO: support batch generation
def generate(
self,
inputs: Optional[torch.Tensor] = None,
**kwargs
) -> Union[GenerateOutput, torch.LongTensor]:
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
text_input_ids=inputs,
text_attention_masks=kwargs.pop('attention_mask'),
text_labels=None,
pixel_values=kwargs.pop('pixel_values'),
left_padding=True
)
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
kwargs['past_key_values'] = self._get_hybrid_cache_for_llm(
getattr(kwargs, "num_beams", inputs_embeds.shape[0]), kwargs['max_new_tokens'] + inputs_embeds.shape[-2])
self.get_llm()._supports_cache_class = True
kwargs['cache_implementation'] = None
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs) |