AIDSC valhalla commited on
Commit
885ac41
·
verified ·
0 Parent(s):

Duplicate from facebook/xglm-7.5B

Browse files

Co-authored-by: Suraj Patil <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - ru
6
+ - zh
7
+ - de
8
+ - es
9
+ - fr
10
+ - ja
11
+ - it
12
+ - pt
13
+ - el
14
+ - ko
15
+ - fi
16
+ - id
17
+ - tr
18
+ - ar
19
+ - vi
20
+ - th
21
+ - bg
22
+ - ca
23
+ - hi
24
+ - et
25
+ - bn
26
+ - ta
27
+ - ur
28
+ - sw
29
+ - te
30
+ - eu
31
+ - my
32
+ - ht
33
+ - qu
34
+ license: mit
35
+ thumbnail: https://huggingface.co/front/thumbnails/facebook.png
36
+ inference: false
37
+ ---
38
+
39
+ # XGLM-7.5B
40
+
41
+ XGLM-7.5B is a multilingual autoregressive language model (with 7.5 billion parameters) trained on a balanced corpus of a diverse set of languages totaling 500 billion sub-tokens. It was introduced in the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin\*, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li\* (\*Equal Contribution). The original implementation was released in [this repository](https://github.com/pytorch/fairseq/tree/main/examples/xglm).
42
+
43
+ ## Training Data Statistics
44
+
45
+ The training data statistics of XGLM-7.5B is shown in the table below.
46
+
47
+ | ISO-639-1| family | name | # tokens | ratio | ratio w/ lowRes upsampling |
48
+ |:--------|:-----------------|:------------------------|-------------:|------------:|-------------:|
49
+ | en | Indo-European | English | 803526736124 | 0.489906 | 0.3259 |
50
+ | ru | Indo-European | Russian | 147791898098 | 0.0901079 | 0.0602 |
51
+ | zh | Sino-Tibetan | Chinese | 132770494630 | 0.0809494 | 0.0483 |
52
+ | de | Indo-European | German | 89223707856 | 0.0543992 | 0.0363 |
53
+ | es | Indo-European | Spanish | 87303083105 | 0.0532282 | 0.0353 |
54
+ | fr | Indo-European | French | 77419639775 | 0.0472023 | 0.0313 |
55
+ | ja | Japonic | Japanese | 66054364513 | 0.040273 | 0.0269 |
56
+ | it | Indo-European | Italian | 41930465338 | 0.0255648 | 0.0171 |
57
+ | pt | Indo-European | Portuguese | 36586032444 | 0.0223063 | 0.0297 |
58
+ | el | Indo-European | Greek (modern) | 28762166159 | 0.0175361 | 0.0233 |
59
+ | ko | Koreanic | Korean | 20002244535 | 0.0121953 | 0.0811 |
60
+ | fi | Uralic | Finnish | 16804309722 | 0.0102455 | 0.0681 |
61
+ | id | Austronesian | Indonesian | 15423541953 | 0.00940365 | 0.0125 |
62
+ | tr | Turkic | Turkish | 12413166065 | 0.00756824 | 0.0101 |
63
+ | ar | Afro-Asiatic | Arabic | 12248607345 | 0.00746791 | 0.0099 |
64
+ | vi | Austroasiatic | Vietnamese | 11199121869 | 0.00682804 | 0.0091 |
65
+ | th | Tai–Kadai | Thai | 10842172807 | 0.00661041 | 0.044 |
66
+ | bg | Indo-European | Bulgarian | 9703797869 | 0.00591635 | 0.0393 |
67
+ | ca | Indo-European | Catalan | 7075834775 | 0.0043141 | 0.0287 |
68
+ | hi | Indo-European | Hindi | 3448390110 | 0.00210246 | 0.014 |
69
+ | et | Uralic | Estonian | 3286873851 | 0.00200399 | 0.0133 |
70
+ | bn | Indo-European | Bengali, Bangla | 1627447450 | 0.000992245 | 0.0066 |
71
+ | ta | Dravidian | Tamil | 1476973397 | 0.000900502 | 0.006 |
72
+ | ur | Indo-European | Urdu | 1351891969 | 0.000824241 | 0.0055 |
73
+ | sw | Niger–Congo | Swahili | 907516139 | 0.000553307 | 0.0037 |
74
+ | te | Dravidian | Telugu | 689316485 | 0.000420272 | 0.0028 |
75
+ | eu | Language isolate | Basque | 105304423 | 6.42035e-05 | 0.0043 |
76
+ | my | Sino-Tibetan | Burmese | 101358331 | 6.17976e-05 | 0.003 |
77
+ | ht | Creole | Haitian, Haitian Creole | 86584697 | 5.27902e-05 | 0.0035 |
78
+ | qu | Quechuan | Quechua | 3236108 | 1.97304e-06 | 0.0001 |
79
+
80
+ ## Model card
81
+
82
+ For intended usage of the model, please refer to the [model card](https://github.com/pytorch/fairseq/blob/main/examples/xglm/model_card.md) released by the XGLM-7.5B development team.
83
+
84
+ ## Example (COPA)
85
+ The following snippet shows how to evaluate our models (GPT-3 style, zero-shot) on the Choice of Plausible Alternatives (COPA) task, using examples in English, Chinese and Hindi.
86
+
87
+ ```python
88
+ import torch
89
+ import torch.nn.functional as F
90
+
91
+ from transformers import XGLMTokenizer, XGLMForCausalLM
92
+
93
+ tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-7.5B")
94
+ model = XGLMForCausalLM.from_pretrained("facebook/xglm-7.5B")
95
+
96
+ data_samples = {
97
+ 'en': [
98
+ {
99
+ "premise": "I wanted to conserve energy.",
100
+ "choice1": "I swept the floor in the unoccupied room.",
101
+ "choice2": "I shut off the light in the unoccupied room.",
102
+ "question": "effect",
103
+ "label": "1"
104
+ },
105
+ {
106
+ "premise": "The flame on the candle went out.",
107
+ "choice1": "I blew on the wick.",
108
+ "choice2": "I put a match to the wick.",
109
+ "question": "cause",
110
+ "label": "0"
111
+ }
112
+ ],
113
+ 'zh': [
114
+ {
115
+ "premise": "我想节约能源。",
116
+ "choice1": "我在空着的房间里扫了地板。",
117
+ "choice2": "我把空房间里的灯关了。",
118
+ "question": "effect",
119
+ "label": "1"
120
+ },
121
+ {
122
+ "premise": "蜡烛上的火焰熄灭了。",
123
+ "choice1": "我吹灭了灯芯。",
124
+ "choice2": "我把一根火柴放在灯芯上。",
125
+ "question": "cause",
126
+ "label": "0"
127
+ }
128
+ ],
129
+ 'hi': [
130
+ {
131
+ "premise": "M te vle konsève enèji.",
132
+ "choice1": "Mwen te fin baleye chanm lib la.",
133
+ "choice2": "Mwen te femen limyè nan chanm lib la.",
134
+ "question": "effect",
135
+ "label": "1"
136
+ },
137
+ {
138
+ "premise": "Flam bouji a te etenn.",
139
+ "choice1": "Mwen te soufle bouji a.",
140
+ "choice2": "Mwen te limen mèch bouji a.",
141
+ "question": "cause",
142
+ "label": "0"
143
+ }
144
+ ]
145
+ }
146
+
147
+ def get_logprobs(prompt):
148
+ inputs = tokenizer(prompt, return_tensors="pt")
149
+ input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:]
150
+ outputs = model(**inputs, labels=input_ids)
151
+ logits = outputs.logits
152
+ logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2))
153
+ return logprobs
154
+
155
+ # Zero-shot evaluation for the Choice of Plausible Alternatives (COPA) task.
156
+ # A return value of 0 indicates that the first alternative is more plausible,
157
+ # while 1 indicates that the second alternative is more plausible.
158
+ def COPA_eval(prompt, alternative1, alternative2):
159
+ lprob1 = get_logprobs(prompt + "\n" + alternative1).sum()
160
+ lprob2 = get_logprobs(prompt + "\n" + alternative2).sum()
161
+ return 0 if lprob1 > lprob2 else 1
162
+
163
+ for lang in data_samples_long:
164
+ for idx, example in enumerate(data_samples_long[lang]):
165
+ predict = COPA_eval(example["premise"], example["choice1"], example["choice2"])
166
+ print(f'{lang}-{idx}', predict, example['label'])
167
+
168
+ # en-0 1 1
169
+ # en-1 0 0
170
+ # zh-0 1 1
171
+ # zh-1 0 0
172
+ # hi-0 1 1
173
+ # hi-1 0 0
174
+ ```
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.0,
3
+ "activation_function": "gelu",
4
+ "architectures": [
5
+ "XGLMForCausalLM"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "attention_heads": 32,
9
+ "bos_token_id": 0,
10
+ "d_model": 4096,
11
+ "decoder_start_token_id": 2,
12
+ "dropout": 0.1,
13
+ "eos_token_id": 2,
14
+ "ffn_dim": 16384,
15
+ "init_std": 0.02,
16
+ "layerdrop": 0.0,
17
+ "max_position_embeddings": 2048,
18
+ "model_type": "xglm",
19
+ "num_layers": 32,
20
+ "pad_token_id": 1,
21
+ "scale_embedding": true,
22
+ "transformers_version": "4.16.0.dev0",
23
+ "use_cache": true,
24
+ "vocab_size": 256008
25
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "decoder_start_token_id": 2,
5
+ "eos_token_id": 2,
6
+ "pad_token_id": 1,
7
+ "transformers_version": "4.27.0.dev0"
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e20979b9115b9c744b4a57a26f2662197cac95d0d0ae01e0487ab079e796d50f
3
+ size 14985725891
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c49dc7e82c10227af764e518924cf2f9d50c00462750d184fa74697bba65eef8
3
+ size 4920706
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "additional_special_tokens": ["<madeupword0>", "<madeupword1>", "<madeupword2>", "<madeupword3>", "<madeupword4>", "<madeupword5>", "<madeupword6>"]}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "sp_model_kwargs": {}, "special_tokens_map_file": "hf_models/xglm-564M/special_tokens_map.json", "additional_special_tokens": ["<madeupword0>", "<madeupword1>", "<madeupword2>", "<madeupword3>", "<madeupword4>", "<madeupword5>", "<madeupword6>"], "name_or_path": "hf_models/xglm-564M/", "tokenizer_class": "XGLMTokenizer"}