yurakuratov
commited on
Commit
·
26ac5d6
1
Parent(s):
ce4721e
docs: update usage example
Browse files
README.md
CHANGED
@@ -4,15 +4,15 @@ tags:
|
|
4 |
- human_genome
|
5 |
---
|
6 |
|
7 |
-
# GENA-LM (gena-lm-bigbird-base-sparse-t2t)
|
8 |
|
9 |
GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences.
|
10 |
|
11 |
GENA-LM models are transformer masked language models trained on human DNA sequence.
|
12 |
|
13 |
-
`gena-lm-bigbird-base-sparse-t2t` follows the BigBird architecture and uses sparse attention from DeepSpeed.
|
14 |
|
15 |
-
Differences between GENA-LM (`gena-lm-bigbird-base-sparse-t2t`) and DNABERT:
|
16 |
- BPE tokenization instead of k-mers;
|
17 |
- input sequence size is about 36000 nucleotides (4096 BPE tokens) compared to 512 nucleotides of DNABERT;
|
18 |
- pre-training on T2T vs. GRCh38.p13 human genome assembly.
|
@@ -22,7 +22,7 @@ Source code and data: https://github.com/AIRI-Institute/GENA_LM
|
|
22 |
Paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1
|
23 |
|
24 |
## Installation
|
25 |
-
`gena-lm-bigbird-base-sparse-t2t` sparse ops require DeepSpeed.
|
26 |
|
27 |
### DeepSpeed
|
28 |
DeepSpeed installation is needed to work with SparseAttention versions of language models. DeepSpeed Sparse attention supports only GPUs with compute compatibility >= 7 (V100, T4, A100).
|
@@ -45,21 +45,45 @@ pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp
|
|
45 |
|
46 |
## Examples
|
47 |
|
48 |
-
###
|
49 |
```python
|
50 |
-
from transformers import AutoTokenizer,
|
51 |
|
52 |
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t')
|
53 |
-
model =
|
|
|
54 |
```
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
### How to load the model to fine-tune it on classification task
|
58 |
```python
|
59 |
-
from
|
|
|
60 |
|
61 |
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t')
|
62 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
```
|
64 |
|
65 |
## Model description
|
|
|
4 |
- human_genome
|
5 |
---
|
6 |
|
7 |
+
# GENA-LM (gena-lm-bigbird-base-sparse-t2t-t2t)
|
8 |
|
9 |
GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences.
|
10 |
|
11 |
GENA-LM models are transformer masked language models trained on human DNA sequence.
|
12 |
|
13 |
+
`gena-lm-bigbird-base-sparse-t2t-t2t` follows the BigBird architecture and uses sparse attention from DeepSpeed.
|
14 |
|
15 |
+
Differences between GENA-LM (`gena-lm-bigbird-base-sparse-t2t-t2t`) and DNABERT:
|
16 |
- BPE tokenization instead of k-mers;
|
17 |
- input sequence size is about 36000 nucleotides (4096 BPE tokens) compared to 512 nucleotides of DNABERT;
|
18 |
- pre-training on T2T vs. GRCh38.p13 human genome assembly.
|
|
|
22 |
Paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1
|
23 |
|
24 |
## Installation
|
25 |
+
`gena-lm-bigbird-base-sparse-t2t-t2t` sparse ops require DeepSpeed.
|
26 |
|
27 |
### DeepSpeed
|
28 |
DeepSpeed installation is needed to work with SparseAttention versions of language models. DeepSpeed Sparse attention supports only GPUs with compute compatibility >= 7 (V100, T4, A100).
|
|
|
45 |
|
46 |
## Examples
|
47 |
|
48 |
+
### How to load pre-trained model for Masked Language Modeling
|
49 |
```python
|
50 |
+
from transformers import AutoTokenizer, AutoModel
|
51 |
|
52 |
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t')
|
53 |
+
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', trust_remote_code=True)
|
54 |
+
|
55 |
```
|
56 |
|
57 |
+
### How to load pre-trained model to fine-tune it on classification task
|
58 |
+
Get model class from GENA-LM repository:
|
59 |
+
```bash
|
60 |
+
git clone https://github.com/AIRI-Institute/GENA_LM.git
|
61 |
+
```
|
62 |
|
|
|
63 |
```python
|
64 |
+
from GENA_LM.src.gena_lm.modeling_bert import BertForSequenceClassification
|
65 |
+
from transformers import AutoTokenizer
|
66 |
|
67 |
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t')
|
68 |
+
model = BertForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t')
|
69 |
+
```
|
70 |
+
or you can just download [modeling_bert.py](https://github.com/AIRI-Institute/GENA_LM/tree/main/src/gena_lm) and put it close to your code.
|
71 |
+
|
72 |
+
OR you can get model class from HuggingFace AutoModel:
|
73 |
+
```python
|
74 |
+
from transformers import AutoTokenizer, AutoModel
|
75 |
+
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', trust_remote_code=True)
|
76 |
+
gena_module_name = model.__class__.__module__
|
77 |
+
print(gena_module_name)
|
78 |
+
import importlib
|
79 |
+
# available class names:
|
80 |
+
# - BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
|
81 |
+
# - BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
|
82 |
+
# - BertForQuestionAnswering
|
83 |
+
# check https://huggingface.co/docs/transformers/model_doc/bert
|
84 |
+
cls = getattr(importlib.import_module(gena_module_name), 'BertForSequenceClassification')
|
85 |
+
print(cls)
|
86 |
+
model = cls.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', num_labels=2)
|
87 |
```
|
88 |
|
89 |
## Model description
|