File size: 2,580 Bytes
0acb5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.986639260020555
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnextv2-large-1k-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20
This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0976
- Accuracy: 0.9866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.9
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.8977 | 1.0 | 122 | 1.8949 | 0.2939 |
| 1.6493 | 2.0 | 244 | 1.6449 | 0.5447 |
| 1.239 | 3.0 | 366 | 1.2819 | 0.6886 |
| 0.9342 | 4.0 | 488 | 0.9664 | 0.7276 |
| 0.7011 | 5.0 | 610 | 0.6760 | 0.8356 |
| 0.5809 | 6.0 | 732 | 0.5792 | 0.8469 |
| 0.4846 | 7.0 | 854 | 0.4280 | 0.8890 |
| 0.6914 | 8.0 | 976 | 0.4121 | 0.8849 |
| 0.3815 | 9.0 | 1098 | 0.2751 | 0.9353 |
| 0.2931 | 10.0 | 1220 | 0.2980 | 0.9198 |
| 0.2485 | 11.0 | 1342 | 0.3090 | 0.9106 |
| 0.1759 | 12.0 | 1464 | 0.0976 | 0.9866 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|