ALM-AHME commited on
Commit
93baa67
·
1 Parent(s): f13b965

Model save

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-3
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-3
17
+
18
+ This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0112
21
+ - Accuracy: 0.9951
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.5
49
+ - num_epochs: 10
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.1885 | 1.0 | 114 | 0.8718 | 0.6593 |
56
+ | 0.7037 | 2.0 | 228 | 0.4208 | 0.8637 |
57
+ | 0.5085 | 2.99 | 342 | 0.3446 | 0.8744 |
58
+ | 0.2874 | 4.0 | 457 | 0.2027 | 0.9327 |
59
+ | 0.355 | 5.0 | 571 | 0.1666 | 0.9401 |
60
+ | 0.2493 | 6.0 | 685 | 0.0969 | 0.9655 |
61
+ | 0.1909 | 6.99 | 799 | 0.0558 | 0.9836 |
62
+ | 0.1821 | 8.0 | 914 | 0.0412 | 0.9901 |
63
+ | 0.1853 | 9.0 | 1028 | 0.0239 | 0.9943 |
64
+ | 0.0666 | 9.98 | 1140 | 0.0112 | 0.9951 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.32.0
70
+ - Pytorch 2.0.1+cu118
71
+ - Datasets 2.14.4
72
+ - Tokenizers 0.13.3