AchyuthGamer commited on
Commit
03ae4e7
·
1 Parent(s): 77b181b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -38
README.md CHANGED
@@ -1,9 +1,9 @@
1
  ---
2
- base_model: mistralai/Mistral-7B-Instruct-v0.1
3
  inference: true
4
  license: apache-2.0
5
  model_creator: Achyuth Gamer
6
- model_name: OpenGPT 7b v0.1
7
  model_type: opengpt
8
  pipeline_tag: text-generation
9
  prompt_template: '<s>[INST] {prompt} [/INST]'
@@ -12,14 +12,14 @@ tags:
12
  - finetuned
13
  ---
14
 
15
- # Mistral 7B Instruct v0.1 - GPTQ
16
  - Model creator: [Achyuth Gamer](https://huggingface.co/AchyuthGamer)
17
  - Original model: [OpenGPT](https://huggingface.co/AchyuthGamer/OpenGPT)
18
 
19
  <!-- description start -->
20
  ## Description
21
 
22
- This repo contains GPTQ model files for [Achyuth AI's OpenGPT 7B v0.1](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1).
23
 
24
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
25
 
@@ -27,7 +27,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
27
 
28
  These models are confirmed to work with ExLlama v1.
29
 
30
- At the time of writing (September 28th), AutoGPTQ has not yet added support for the new Mistral models.
31
 
32
  These GPTQs were made directly from Transformers, and so can be loaded via the Transformers interface. They can't be loaded directly from AutoGPTQ.
33
 
@@ -42,11 +42,11 @@ pip3 install git+https://github.com/huggingface/transformers.git@72958fcd3c98a7a
42
 
43
  * [AWQ model(s) for GPU inference.](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1)
44
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1)
45
- * [Mistral AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1)
46
  <!-- repositories-available end -->
47
 
48
  <!-- prompt-template start -->
49
- ## Prompt template: Mistral
50
 
51
  ```
52
  <s>[INST] {prompt} [/INST]
@@ -104,7 +104,7 @@ I recommend using the `huggingface-hub` Python library:
104
  pip3 install huggingface-hub
105
  ```
106
 
107
- To download the `main` branch to a folder called `Mistral-7B-Instruct-v0.1-GPTQ`:
108
 
109
  ```shell
110
  mkdir OpenGPT-7b-0.1
@@ -114,7 +114,7 @@ huggingface-cli download AchyuthGamer/OpenGPT-7b-0.1 --local-dir OpenGPT-7b-0.1
114
  To download from a different branch, add the `--revision` parameter:
115
 
116
  ```shell
117
- mkdir Mistral-7B-Instruct-v0.1-GPTQ
118
  huggingface-cli download AchyuthGamer/OpenGPT-7b-0.1 --revision gptq-4bit-32g-actorder_True --local-dir OpenGPT-7b-0.1 --local-dir-use-symlinks False
119
  ```
120
 
@@ -166,13 +166,13 @@ Please make sure you're using the latest version of [text-generation-webui](http
166
  It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
167
 
168
  1. Click the **Model tab**.
169
- 2. Under **Download custom model or LoRA**, enter `TheBloke/Mistral-7B-Instruct-v0.1-GPTQ`.
170
- - To download from a specific branch, enter for example `TheBloke/Mistral-7B-Instruct-v0.1-GPTQ:gptq-4bit-32g-actorder_True`
171
  - see Provided Files above for the list of branches for each option.
172
  3. Click **Download**.
173
  4. The model will start downloading. Once it's finished it will say "Done".
174
  5. In the top left, click the refresh icon next to **Model**.
175
- 6. In the **Model** dropdown, choose the model you just downloaded: `Mistral-7B-Instruct-v0.1-GPTQ`
176
  7. The model will automatically load, and is now ready for use!
177
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
178
  * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
@@ -180,7 +180,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
180
  <!-- README_GPTQ.md-text-generation-webui end -->
181
 
182
  <!-- README_GPTQ.md-use-from-python start -->
183
- ## How to use this GPTQ model from Python code
184
 
185
  ### Install the necessary packages
186
 
@@ -207,7 +207,7 @@ pip3 install .
207
  ```python
208
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
209
 
210
- model_name_or_path = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ"
211
  # To use a different branch, change revision
212
  # For example: revision="gptq-4bit-32g-actorder_True"
213
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
@@ -259,7 +259,7 @@ The files provided are only tested to work with ExLlama v1, and Transformers 4.3
259
 
260
  For further support, and discussions on these models and AI in general, join us at:
261
 
262
- [TheBloke AI's Discord server](https://discord.gg/theblokeai)
263
 
264
  ## Thanks, and how to contribute
265
 
@@ -273,28 +273,16 @@ If you're able and willing to contribute it will be most gratefully received and
273
 
274
  Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
275
 
276
- * Patreon: https://patreon.com/TheBlokeAI
277
- * Ko-Fi: https://ko-fi.com/TheBlokeAI
278
-
279
- **Special thanks to**: Aemon Algiz.
280
-
281
- **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
282
-
283
-
284
- Thank you to all my generous patrons and donaters!
285
-
286
- And thank you again to a16z for their generous grant.
287
-
288
  <!-- footer end -->
289
 
290
- # Original model card: Mistral AI's Mistral 7B Instruct v0.1
291
 
292
 
293
- # Model Card for Mistral-7B-Instruct-v0.1
294
 
295
- The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.
296
 
297
- For full details of this model please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/)
298
 
299
  ## Instruction format
300
 
@@ -314,8 +302,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
314
 
315
  device = "cuda" # the device to load the model onto
316
 
317
- model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
318
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
319
 
320
  messages = [
321
  {"role": "user", "content": "What is your favourite condiment?"},
@@ -334,7 +322,7 @@ print(decoded[0])
334
  ```
335
 
336
  ## Model Architecture
337
- This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
338
  - Grouped-Query Attention
339
  - Sliding-Window Attention
340
  - Byte-fallback BPE tokenizer
@@ -350,7 +338,7 @@ File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretr
350
  config_class = CONFIG_MAPPING[config_dict["model_type"]]
351
  File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
352
  raise KeyError(key)
353
- KeyError: 'mistral'
354
  ```
355
 
356
  Installing transformers from source should solve the issue
@@ -360,10 +348,10 @@ This should not be required after transformers-v4.33.4.
360
 
361
  ## Limitations
362
 
363
- The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
364
  It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
365
  make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
366
 
367
- ## The Mistral AI Team
368
 
369
- Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
 
1
  ---
2
+ base_model: OpenGPTai/OpenGPT-7B-Instruct-v1.0
3
  inference: true
4
  license: apache-2.0
5
  model_creator: Achyuth Gamer
6
+ model_name: OpenGPT 7b v1.0
7
  model_type: opengpt
8
  pipeline_tag: text-generation
9
  prompt_template: '<s>[INST] {prompt} [/INST]'
 
12
  - finetuned
13
  ---
14
 
15
+ # OpenGPT 7B Instruct v1.0
16
  - Model creator: [Achyuth Gamer](https://huggingface.co/AchyuthGamer)
17
  - Original model: [OpenGPT](https://huggingface.co/AchyuthGamer/OpenGPT)
18
 
19
  <!-- description start -->
20
  ## Description
21
 
22
+ This repo contains GPTQ model files for [Achyuth AI's OpenGPT 7B v1.0](https://huggingface.co/AchyuthGamer/OpenGPT-7b-1.0).
23
 
24
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
25
 
 
27
 
28
  These models are confirmed to work with ExLlama v1.
29
 
30
+ At the time of writing (September 28th), AutoGPTQ has not yet added support for the new OpenGPT models.
31
 
32
  These GPTQs were made directly from Transformers, and so can be loaded via the Transformers interface. They can't be loaded directly from AutoGPTQ.
33
 
 
42
 
43
  * [AWQ model(s) for GPU inference.](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1)
44
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1)
45
+ * [OpenGPT AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/AchyuthGamer/OpenGPT-7b-0.1)
46
  <!-- repositories-available end -->
47
 
48
  <!-- prompt-template start -->
49
+ ## Prompt template: OpenGPT
50
 
51
  ```
52
  <s>[INST] {prompt} [/INST]
 
104
  pip3 install huggingface-hub
105
  ```
106
 
107
+ To download the `main` branch to a folder called `OpenGPT-7B-Instruct-v1.0-GPTQ`:
108
 
109
  ```shell
110
  mkdir OpenGPT-7b-0.1
 
114
  To download from a different branch, add the `--revision` parameter:
115
 
116
  ```shell
117
+ mkdir OpenGPT-7B-Instruct-v1.0-GPTQ
118
  huggingface-cli download AchyuthGamer/OpenGPT-7b-0.1 --revision gptq-4bit-32g-actorder_True --local-dir OpenGPT-7b-0.1 --local-dir-use-symlinks False
119
  ```
120
 
 
166
  It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
167
 
168
  1. Click the **Model tab**.
169
+ 2. Under **Download custom model or LoRA**, enter `AchyuthGamer/OpenGPT-7B-Instruct-v1.0-GPTQ`.
170
+ - To download from a specific branch, enter for example `AchyuthGamer/OpenGPT-7B-Instruct-v1.0-GPTQ:gptq-4bit-32g-actorder_True`
171
  - see Provided Files above for the list of branches for each option.
172
  3. Click **Download**.
173
  4. The model will start downloading. Once it's finished it will say "Done".
174
  5. In the top left, click the refresh icon next to **Model**.
175
+ 6. In the **Model** dropdown, choose the model you just downloaded: `OpenGPT-7B-Instruct-v1.0-GPTQ`
176
  7. The model will automatically load, and is now ready for use!
177
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
178
  * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
 
180
  <!-- README_GPTQ.md-text-generation-webui end -->
181
 
182
  <!-- README_GPTQ.md-use-from-python start -->
183
+ ## How to use this OpenGPT model from Python code
184
 
185
  ### Install the necessary packages
186
 
 
207
  ```python
208
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
209
 
210
+ model_name_or_path = "AchyuthGamer/OpenGPT-7B-v1.0"
211
  # To use a different branch, change revision
212
  # For example: revision="gptq-4bit-32g-actorder_True"
213
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
259
 
260
  For further support, and discussions on these models and AI in general, join us at:
261
 
262
+ [Our AI's Discord server](https://discord.gg/accspard)
263
 
264
  ## Thanks, and how to contribute
265
 
 
273
 
274
  Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
275
 
 
 
 
 
 
 
 
 
 
 
 
 
276
  <!-- footer end -->
277
 
278
+ # Original model card: OpenGPT AI's OpenGPT 7B Instruct v1.0
279
 
280
 
281
+ # Model Card for OpenGPT-7B-v1.0
282
 
283
+ The OpenGPT-7B-Instruct-v1.0 Large Language Model (LLM) is a instruct fine-tuned version of the [OpenGPT-7B-v1.0](https://huggingface.co/OpenGPTai/OpenGPT-7B-v1.0) generative text model using a variety of publicly available conversation datasets.
284
 
285
+ For full details of this model please read our [release blog post](https://OpenGPT.ai/news/announcing-OpenGPT-7b/)
286
 
287
  ## Instruction format
288
 
 
302
 
303
  device = "cuda" # the device to load the model onto
304
 
305
+ model = AutoModelForCausalLM.from_pretrained("OpenGPTai/OpenGPT-7B-Instruct-v1.0")
306
+ tokenizer = AutoTokenizer.from_pretrained("OpenGPTai/OpenGPT-7B-Instruct-v1.0")
307
 
308
  messages = [
309
  {"role": "user", "content": "What is your favourite condiment?"},
 
322
  ```
323
 
324
  ## Model Architecture
325
+ This instruction model is based on OpenGPT-7B-v1.0, a transformer model with the following architecture choices:
326
  - Grouped-Query Attention
327
  - Sliding-Window Attention
328
  - Byte-fallback BPE tokenizer
 
338
  config_class = CONFIG_MAPPING[config_dict["model_type"]]
339
  File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
340
  raise KeyError(key)
341
+ KeyError: 'OpenGPT'
342
  ```
343
 
344
  Installing transformers from source should solve the issue
 
348
 
349
  ## Limitations
350
 
351
+ The OpenGPT 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
352
  It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
353
  make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
354
 
355
+ ## The OpenGPT Team
356
 
357
+ Achyuth, Ayush