Text Generation
Transformers
PyTorch
Safetensors
English
llama
finance
text-generation-inference
Inference Endpoints
AdaptLLM commited on
Commit
99d48dd
·
1 Parent(s): 6699e7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -43,8 +43,8 @@ For example, to chat with the finance model:
43
  ```python
44
  from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
- model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-chat")
47
- tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-chat", use_fast=False)
48
 
49
  # Put your input here:
50
  user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
@@ -56,8 +56,8 @@ MMM Chicago Stock Exchange, Inc.
56
 
57
  Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
58
 
59
- # We use the prompt template of LLaMA-2-Chat demo
60
- prompt = f"<s>[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n{user_input} [/INST]"
61
 
62
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
63
  outputs = model.generate(input_ids=inputs, max_length=4096)[0]
 
43
  ```python
44
  from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
+ model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-LLM-13B")
47
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-LLM-13B", use_fast=False)
48
 
49
  # Put your input here:
50
  user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
 
56
 
57
  Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
58
 
59
+ # NOTE: You do NOT need to follow any prompt templates for the chat model, simply use your input as the prompt
60
+ prompt = user_input
61
 
62
  inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
63
  outputs = model.generate(input_ids=inputs, max_length=4096)[0]